

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

LIBRARY

OF THE

UNIVERSITY OF CALIFORNIA.

Class

THE LABORATORY COMPANION

то

FATS AND OILS INDUSTRIES

THE

LABORATORY COMPANION

TO

FATS AND OILS

INDUSTRIES

BY

DR. J. LEWKOWITSCH, M.A., F.I.C.

CONSULTING AND ANALYTICAL CHEMIST, AND CHEMICAL ENGINEER; EXAMINER IN 'SOAP
MANUFACTURE,' AND IN 'FATS AND OILS, INCLUDING CANDLE MANUFACTURE,'
TO THE CITY AND GUILDS OF LONDON INSTITUTE

London

MACMILLAN AND CO., LIMITED NEW YORK: THE MACMILLAN COMPANY

1901

Digitized by Google

18671

CENERAL

PREFACE

For several years past I have been contemplating the idea of collecting together in readily accessible tables all numerical values required in the examination of fats and oils. This book presents these in a handy form, which has stood the test of practical experience during the somewhat lengthy time this work has been in preparation.

The book consists almost exclusively of tables; the description of methods has not been given, nor has it been considered advisable to add any explanations as to the contents of the tables. Such information is contained in my Chemical Analysis of Oils, Fats, and Waxes, and of the Commercial Products derived therefrom, second edition (Macmillan and Co., 1898), to the pages of which the reader must be referred.

In Part I. only I have considered it necessary to introduce a few pages of subject matter explanatory of the system of fats and oils, as this has been considerably strengthened since the appearance of my *Chemical Analysis*. I may add that this Part I. should not be looked upon as merely a tabulated epitome of that work. A number of tables have been specially calculated to give further information and assistance in the interpretation of analytical results.

Part II. will, I hope, be found the most useful portion of the work. Numerical values, so-called constants, and variables, have been carefully scrutinised, and only the most reliable ones have been given. In some cases I had to decide on the most probable values.

It is hardly necessary to add that the literature of the subject has been taken note of down to the latest possible date, and that numerous values, extracted from my laboratory note-books, are

vi LABORATORY COMPANION TO FATS AND OILS INDUSTRIES

published here for the first time. Throughout this part the greatest attention has been paid to the requirements of the works chemist.

Part III. contains a few tables which are very frequently required, and are added to enhance the usefulness of this book as a laboratory manual. Some of these tables have been taken from Lunge and Böckmann's Chemisch-technische Untersuchungsmethoden.

J. LEWKOWITSCH.

LONDON, September 1901.

CONTENTS

PART I

SYSTEM AND EXAMINATION OF FATS AND WAXES

								PAGI
A. Systei	M OF FATS AND WAY	KES .	•			•		:
FATT	Y OILS AND FATS .							;
WAXI	ES			•				4
B. SAPON	IFICATION OF FATS A	ND WAX	Es .					4
C. EXAMI	NATION OF FATS AND	WAXES						
Physi	ICAL METHODS .				•			
Снем	ICAL METHODS .	•	•	•	•	•		6
		TAF	BLES					
Table N	o. 1.—Monoglyceride	з.						8-8
,,	2.—Diglycerides .							8-8
,,	3.—Triglycerides.							10-11
,,	4.—Waxes .							12
,,	5.—Saponification	of a pure	Triglyce	ride				13
,,	6.—Fatty Acids .							14-21
,,	7.—Alcohols .							22-23
,,	8.—Freezing Mixtu	res .	•					24
,,	9.—Saponification							
	and Yield		cerol fr	om Mo	no-, Di-	, and	Tri-	
	glycerides		•	•				26-27
"	10.—Iodine Values of cerides .	of Unsatu	rated F	atty Ac	ids and	their	Gly-	25
,,	11.—Logarithms for	the Quot	ient 🕳 T	0·2 hiosulph	ate			28
,,	12.—Saponification					•		29

viii LABORATORY COMPANION TO FATS AND OILS INDUSTRIES

Table No. 13.—Acetylated Glycerides. So of Insoluble Fatty Ac						PAGE
Di-, and Tri-glycerid						30-31
,, 14.—Acetyl Values of Alcohols				_		32
,, 15.—Acid Values of Fatty Acid	s .					32
,, 16.—Conversion of Acid Value		eic Acid	ι.			33
,, 17.—Some Unsaponifiable Subst				stants		33
" 18.—Elaïdin Test .						34
10 - Sulphur Chlorido Tost	i					34-35
,, 20.—Oxygen Absorption by Liv	ache's '	Test	Ī			35
21 Overgon Absorption by Ric			Ī			36
22 Hudrovulated Acids obtain	-		sino	Unsatur	ated.	
Fatty Acids .		·	 DIME			37
,, 23.—Bromoderivatives of Unsat		Fatty A	cids			38
PART	II					
FATS, OILS, AND WAXES, AND T DERIVED TH			ERCI.	AL PRO	DDU	JCTS
A. FATS, OILS, WAXES, AND THEIR CONS		AND V	ARIAF	BLES	•	PAGE 41
TABLI	18					
Table No. 24 A.—Vegetable Oils.						
Drying Oils .		•	•	•	•	42-43
Semi-Drying Oils	•	•	•	•		44-45
Non-Drying Oils						46-47
,, 24 B.—Animal Oils.						
Marine Animal Oils						48-49
Terrestrial Animal O	ils					48-49
,, 24 C.—Vegetable Fats .	•	•	•	• .	•	50-51
,, 24 D.—Animal Fats.						
Drying Fats .					•	52-53
Non-drying Fats		•				52-53
,, 24 E.—Waxes.				•		
Liquid Waxes .						54-55
Solid Waxes .	į			į	•	54-55
NOTIC 11 6200 .	•	•	•	•	•	0 T-00
B. COMMERCIAL PRODUCTS OF THE FATS A	ND OI	LS IND	USTRI	Es.		
1. Lubricants.						
Tables No. 25 A. to F.—Viscosities of s	ome Oil	ls and I	ats	•	•	58-60

CONTENTS	ix
2. Wool Oils—Cloth Oils,	PAGE
Table No. 26.—Analyses of Ordinary Wool Oils	. 63
97 Applyage of Fraulties Weel Oils	. 64
•	. 64
,, 28.—Heat Test of Wool Oils	. 04
3. Sod Oils—Dégras.	
Table No. 29.—Analyses of some Oils and the Sod Oils made there	from 67
,, 30.—Analyses of some American Sod Oils	. 68
. ,, 31.—Analyses of some Dégras	. 69
,, 32.—Analyses of some Dégras	. 70
,, 33.—Analyses of Dégras and Similar Products .	. 71
,, 34.—Analyses of some Dégras	. 72
4. Oxidised Oils,	
(a) Blown Oils.	
Table No. 35.—Some Constants and Variables of Blown Oils .	. 74-75
,, 36.—Analyses of some Oils and their Blown Oils .	. 76
,, <u>-</u>	• • •
4. Oxidised Oils.	
(b) Boiled Oils and their Raw Materials.	
Table No. 37.—Oxygen Absorption by the Glass-Plate Method	. 78-79
,, 38.—Oxygen Absorption of Boiled Oils, Varnish Oils, Resin Oils	, and . 80-81
20 Oxidical Oils propaged by Treetment with Oxyge	
40.—Some Constants and Variables of Commercial B	
Oils	. 82
,, 41.—Some Constants and Variables of Gums used Varnishes	d in . 83
,, 42.—Analyses of Lithographic Varinshes prepared by ing over Fire	boil-
,, 43.—Some Commercial Driers	. 84
5. VULCANISED OILS.	
Table No. 44.—Vulcanised Oils—India Rubber Substitutes .	. 87
6. Candle-Making.	
Table No. 45.—Milk of Lime in Degrees Baumé obtained from 1 l	Kilo-
gram Caustic Lime	. 91
,, 46.—Percentages of Caustic Lime in Milk of Lime .	. 92
,, 47.—Sulphuric Acid required to saturate 100 Kilogram	ns of
Lime	. 92
,, 48.—Melting Points of Mixtures of Lauric Acid Myristic, Palmitic, and Stearic Acids .	with . 93
,, 49.—Melting Points of Mixtures of Myristic Acid Palmitic and Stearic Acids	with 93
" 50.—Melting Points of Mixtures of Palmitic Acid	with
Stearic Acid	. 94
of Stearic and Palmitic Acids	. 95

X LABORATORY COMPANION TO FATS AND OILS INDUSTRIES

		PAG
Table	No. 52.—Solidifying Points of Mixtures of Commercial Stearic	
	and Oleic Acids	9
,,	53.—Solidifying Points of "Stearines" obtained by the Acid	
•	Saponification Process	9
,,	54.—"Stearine" in Red Oils from the Acid Saponification Process	9
	55.—Percentages of Oleic Acid in Red Oils	9
,,	56 Walting Daints of Mintunes of Dalmitis and Canatia	
"	56.—Melting Points of Mixtures of Palmitic and Cerotic Acids	98
		90
"	57.—Melting Points of Fractions obtained from Scotch Paraffin Waxes	9:
	58.—Specific Gravity of Paraffin Waxes	99
,,	<u> </u>	
,,	59.—Specific Gravity of Melted Paraffin Waxes	99
,,	60.—Specific Gravities of Solid Paraffin Waxes at 60° F.	99
,,	61.—Solubility of Paraffin Wax	100
,,	62.—Melting Points of Candle Material from "Mixed	01 106
		01-10
,,	63.—Melting Points of Candle Material from Mixed Paraffin	100
	Wax (Thuringian) and "Stearine"	108
,,	64.—Mixed Ceresine and Beeswax Candle Material	104
,,	65. Mixed Ceresine and Paraffin Wax Candle Material .	104
"	66.—Commercial Oleines (Oleic Acids)	108
7.—Soap I	Manufacture.	
Table No	o. 67.—Percentages of Caustic Soda and Caustic Potash in Caustic Lyes	09-110
	68.—Influence of Temperatures on the Specific Gravities of	00-110
,,		12-115
,,	69.—Caustic Alkali Solutions required to saponify Fats of	
	Mean Molecular Weight 860 (Tallow, Cottonseed	
	Oil, Olive Oil, etc.)	111
,,	70.—Caustic Alkali Solutions required to saponify Fats of	
	Mean Molecular Weight 670 (Cocoa nut Oil, Palm- kernel Oil	116
		110 17-118
,,	72.—Specific Gravities of Solutions of Sodium Carbonate at	17-110
,,	15° C	118
	73.—Specific Gravities of Solutions of Potassium Carbonate	-10
,,	at 15° C.	119
,,,,	74.—Determination of Resin in Soap by Twitchell's Method.	120
.**	• •	
8. GLYCERI	N.	
Table No	. 75.—Residue and Ash of Distilled Glycerines	123
,,	76.—Specific Gravities of Aqueous Solutions of Glycerin .	124
,,	77.—Specific Gravities and Refractive Indices of Aqueous	
•	Solutions of Glycerin	125
,,	78.—Specific Gravities, Boiling Points, and Vapour Tensions	
• •	of Aqueous Solutions of Glycerin	126

PART III

GENERAL TABLES

			PAGE
Table No.	79.—Comparison of different Thermometric Scales .	129	-130
,,	80.—Comparison of different Thermometric Scales .		131
,,	81.—Comparison of the Hydrometer Degrees according		
	Baumé and Twaddell with the Specific Gravities	132	-133
,,	82.—Degrees Baumé for Liquids lighter than Water at 15	·5°	
	$C. = 60^{\circ} \text{ F.}$	•	133
,,	83.—Specific Gravities of Hydrochloric Acid		134
,,	84.—Specific Gravities of Mixtures of Pure Sulphuric Ac	id	
	and Water	135	-138
,,	85.—Specific Gravities of Commercial Fuming Sulphur	ric	
	Acid		139
,,	86.—Percentages of SO ₃ in Commercial Fuming Sulphur	ric	
	Acid		139
,,	87.—Specific Gravities of Solutions of Common Salt .		140
,,	88.—Specific Gravities of Mixtures of Alcohol and Water	at	
	15·5° C		140
,,	89.—Percentages of Absolute Alcohol in Aqueous Solutions		141
INDEX		٠	143

$\begin{array}{ccc} \mathbf{PART} & \mathbf{I} \\ \mathbf{SYSTEM} & \mathbf{AND} & \mathbf{EXAMINATION} & \mathbf{OF} & \mathbf{FATS} \\ \mathbf{AND} & \mathbf{WAXES} \end{array}$

A. SYSTEM OF FATS AND WAXES

FATTY OILS AND FATS

THE fatty oils (liquid fats) and fats occur in animals and plants in the form of the "neutral glycyl ethers" or "triglycerides." They are also termed "neutral oils and fats" in contradistinction to those oils (liquid fats) and fats which contain more or less considerable quantities of free fatty acids. The latter must be considered as having been derived from the neutral fats by a slow process of spontaneous decomposition, in the course of which diglycerides, monoglycerides, free fatty acids, and glycerol have been formed.

The following three tables (Tables Nos. 1, 2, and 3) contain a list of monoglycerides, diglycerides, and triglycerides hitherto isolated in a

pure state, and their constants as far as ascertained.

The fatty oils (liquid fats) and fats consist of mixtures of the triglycerides, such as mentioned in Table No. 3, and, besides these, of other glycerides which have not yet been prepared in a pure state.

The triglycerides may be either glycerides of one fatty acid only or "mixed glycerides," i.e. a glyceride in which more than one fatty

acid is combined with glycerol, such as oleodistearin.

The most convenient classification of fatty oils (liquid fats) and fats for practical purposes can be based on the magnitude of the iodine value. This principle includes their subdivision into oils (liquid fats) and solid fats, according to their consistency, and also that based on their capability of absorbing oxygen, more or less rapidly, on exposure to the air at the ordinary temperature.

Arranging then, according to the iodine value, we obtain the following subdivisions, taking as two parallel branches the vegetable fats on the one hand, and animal fats on the other, not only for the sake of convenience but also for the further reason that vegetable fats can be chemically differentiated from animal fats by the occurrence of phytosterol in the former, whereas animal fats are recognised by the presence of cholesterol.

I. LIQUID FATS OR FATTY OILS

A. Vegetable Oils-

- 1. Drying Oils.
- 2. Semi-Drying Oils.
- 3. Non-Drying Oils.

B. Animal Oils-

- 1. Marine Animal Oils.
 - (a) Fish Oils.
 - (b) Liver Oils.
 - (c) Blubber Oils.
- 2. Terrestrial Animal Oils.

II. SOLID FATS

- A. Vegetable Fats.
- B. Animal Fats.
 - 1. Drying.
 - 2. Non-Drying.

WAXES

The waxes are, chemically considered, ethers formed by the union of fatty acids and of alcohols, not belonging to the glycerol series. Hence, by the absence of glycerol they are sharply differentiated from the oils and fats with which they have many physical properties in common. The constants of a number of "waxes" isolated in the pure state are collated in Table No. 4.

The natural waxes also, may be conveniently classified according to their iodine values, with subdivisions, in a similar manner to that adopted for fatty oils and fats, as follows:—

I. LIQUID WAXES

II. SOLID WAXES

- A. Vegetable Waxes.
- B. Animal Waxes.

All the better known natural fats and waxes are tabulated according to the foregoing classification, together with their origins, yields, and those numbers which are employed in analysis for their identification and examination in the tables in Part II., headed Tables 24.

B. SAPONIFICATION OF FATS AND WAXES

The saponification of fats takes place according to the following equation:—

$$C_3H_5$$
 O.R $+3M.OH = C_3H_5$ O.M $+3R.OH$, O.R

where R denotes the radicle of any fatty acid, and M stands for a monovalent metal or hydrogen.

In the light of experiments made by Geitel and by the author, this

1

equation must be considered as a summary of the following three equations:—

$$\begin{split} &C_{3}H_{5} \overset{O.\ R}{\underset{O.\ R}{}} + MOH = &C_{3}H_{5} \overset{O.\ M}{\underset{O.\ R}{}} + R.\ OH, \\ &C_{3}H_{5} \overset{O.\ M}{\underset{O.\ R}{}} + MOH = &C_{3}H_{5} \overset{O.\ M}{\underset{O.\ R}{}} + R.\ OH, \\ &C_{3}H_{5} \overset{O.\ M}{\underset{O.\ R}{}} + MOH = &C_{3}H_{5} \overset{O.\ M}{\underset{O.\ R}{}} + R.\ OH, \\ &O.\ M &O.\ M$$

expressing the fact that saponification takes place in three stages, passing from the triglyceride through the diglyceride and monoglyceride to the products of complete saponification, namely, free fatty acid and glycerol.

The difference between the old view and the new view finds its numerical expression in the Table No. 5, where the percentages of glycerol to be expected from a pure triglyceride, as saponification progresses, are placed side by side with the percentages of free fatty acids formed simultaneously.

The saponification of waxes takes place according to the following equation:—

$$C_nH_{2n+1}CO.O.C_nH_{2m+1}+MOH=C_nH_{2n+1}CO.OM+C_nH_{2m+1}OH.$$

The different constituents into which fats and waxes are resolved by the process of saponification are enumerated in the Tables Nos. 6 and 7, together with those constants that have been determined hitherto. To the table of naturally occurring fatty acids there are added in an Appendix the constants of some hydroxylated and dibasic acids that are met with in products of the fat and oil industries.

C. EXAMINATION OF FATS AND WAXES

The examination of a fat or wax must be preceded by its purification from foreign substances. This is attained by extracting the fatty matter with a volatile solvent, and evaporating off the latter.

The purified fat or wax is then examined by the following general physical, and chemical methods. (Only in special cases detection and determination of sulphur, phosphorus, metals, etc., is required.)

Physical Methods

The physical methods are confined chiefly to the determination of the

(a) Specific gravity.

(b) Melting and solidifying points.

(c) Refractive power

The constants ascertained hitherto are stated in the Tables No. 24 in Part II.

For the determination of the solidifying point at low temperatures it is necessary to employ freezing mixtures, such as those given in Table No. 8.

The determination of the viscosity will in some cases give useful indications; but hitherto the viscosity has not become of sufficient importance as a constant to be able to afford discriminative value. Tables giving the viscosities will be found under the heading "Lubricants," Tables No. 25 in Part II.

Chemical Methods

The chemical methods in use refer, in the first instance, to the determination of the "constants" or "quantitative reactions." They comprise the following values:—

(a) Saponification value.

(b) Reichert value, or Reichert-Meissl value.

(c) Insoluble fatty acids + Unsaponifiable (Hehner value).

(d) Iodine value.

As a guide to the proper interpretation of the numbers so obtained and set out in the general Tables No. 24 in Part II, the Tables Nos. 9, 10, and 11 will be found useful.

Table No. 9 gives the saponification values, percentages of insoluble fatty acids (Hehner values), and yields of glycerol of mono-, di-, and triglycerides of the most frequently occurring fatty acids.

Table No. 10 states the iodine values of unsaturated fatty acids, and of their corresponding mono-, di-, and triglycerides. For the purpose of rapidly calculating the iodine value, Table No. 11 gives the logarithms of the quotient $\frac{0.2}{\text{c.c. thiosulphate}}$ for the most frequently occurring numbers.

Table No. 12 will be found useful in the interpretation of results obtained in the examination of waxes.

Besides these constants it is often required to determine the

(a) Acetyl value,

(b) Acid value,

(c) Unsaponifiable matter,

since from these numbers important conclusions can be derived as to the valuation of a fat or wax under examination. These numbers not being "constants," but varying with the mode of purification and with other accidental circumstances, have been comprised under the heading "Variables" in Tables No. 24, Part II.

A reservation must, however, be made with regard to the acetyl value, which in some cases must be considered a "constant," as in castor oil (and generally in the case of triglycerides of hydroxylated fatty acids), and alcohols. Tables No. 13 and No. 14 will afford the necessary guidance in the interpretation of experimental data.

Table No. 15 gives the "acid values" of a number of pure fatty acids. The acid value is frequently expressed in terms of oleic acid. Table No. 16 will assist in readily converting one term into another.

The examination of the unsaponifiable matter will be materially expedited by a reference to Table No. 17.

Besides these foregoing methods, we have a number of chemical reactions which have not yet attained to the rank of quantitative reactions, and are usually comprised under the name of qualitative reactions. They include:—

(a) The Elaïdin test, Table No. 18;

(b) The Sulphur Chloride test, Table No. 19;

(c) The Thermal test, cp. Tables No. 24 in Part II; and

(d) The Oxygen Absorption test, Tables Nos. 20 and 21, cp. also "Oxidised Oils," Part II.

For the further examination of the fatty acids and their separation into individual fatty acids, scientific methods must be resorted to. Those hitherto used are, however, not expeditious enough for general application. They comprise, in the first instance, the separation of the volatile from the non-volatile fatty acids, and then the separation of the solid fatty acids from the liquid acids.

An insight into the nature of the latter is obtained by examining the oxidation products on the one hand and the bromination products on the other. The Tables Nos. 22 and 23 give the numbers obtained hitherto for the best examined substances.

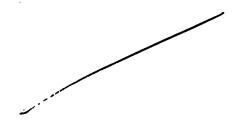


TABLE No. 1.—

	Monoglycer	ides	3 .		Formula.	Molecular Words		pecific ravity.	Solidi- fying Point.
						Weight.	°C.	-	°C.
1 2	Mono-formin Mono-acetin		:		C ₃ H ₅ (O. CHO)(OH) ₂ C ₃ H ₅ (O. C ₂ H ₃ O)(OH) ₂	120 134	 18	1.2212	
3	Mono-butyrin				${ m C_3H_5(O.C_4H_7O)(OH)_2}$	162	17	1.088	
4 5 6	Mono-isovalerin Mono-palmitin Mono-stearin		:	•	$\begin{array}{l} {\rm C_3H_5(O.C_5H_9O)(OH)_2} \\ {\rm C_3H_5(O.C_{16}H_{31}O)(OH)_2} \\ {\rm C_3H_5(O.C_{18}H_{35}O)(OH)_2} \end{array}$	176 330 358	16 	1·100 	
7 8 9 10	Mono-arachin Mono-cerotin Mono-melissin Mono-olein		· · ·		$\begin{array}{l} C_3H_5(O\cdot C_{20}H_{39}O)(OH)_2 \\ C_3H_5(O\cdot C_{26}H_{51}O)(OH)_2 \\ C_3H_5(O\cdot C_{30}H_{59}O)(OH)_2 \\ C_3H_5(O\cdot C_{18}H_{33}O)(OH)_2 \end{array}$	386 470 526 356	 21	0.947	 15-20

TABLE No. 2.—

	Diglyce	Diglycerides. Formula.		Molecular		pecific ravity.	Solidi- fying Point.		
	Digiyeerides.					Weight.	°C.	-	°C.
1 2	Di-formin Di-acetin .		:	•	C ₃ H ₅ (O. CHO) ₂ OH C ₃ H ₅ (O. C ₂ H ₃ O) ₂ OH	148 176	15 18	1:304 1:1769- 1:1788	•
3 4 5	Di-butyrin Di-isovalerin Di-palmitin	•			$\begin{array}{l} { m C_3H_5(O.C_4H_7O)_2OH} \\ { m C_3H_5(O.C_5H_9O)_2OH} \\ { m C_3H_5(O.C_{16}H_{31}O)_2OH} \end{array}$	232 260 568	17 16 	1.083 1.059	
6	Di-stearin	•			${ m C_3H_5(O.C_{18}H_{35}O)_2OH}$	624			
7 8 9 10 11	Di-arachin Di-cerotin Di-melissin Di-olein . Di-erucin .		· · · · · · · · · · · · · · · · · · ·	•	$\begin{array}{c} \mathrm{C_3H_5(O.C_{20}H_{39}O)_2OH} \\ \mathrm{C_3H_5(O.C_{20}H_{51}O)_2OH} \\ \mathrm{C_9H_5(O.C_{30}H_{50}O)_2OH} \\ \mathrm{C_9H_5(O.C_{18}H_{23}O)_2OH} \\ \mathrm{C_3H_5(O.C_{18}H_{23}O)_2OH} \\ \mathrm{C_3H_5(O.C_{22}H_{41}O)_2OH} \end{array}$	680 848 940 620 732	 21	0.921	 10-15
12	Di-brassidin	•	•	-	$C_{3}H_{5}(O.C_{22}H_{41}O)_{2}OH$	732			

Monogly cerides

Melting Point.	Boiling Point.		Solubility.						
°C.	m.m. Pressure.	°C.							
	0	165		١.					
•••	2-3	130-132	Easily soluble in water and alcohol; very sparingly soluble in ether, and almost insoluble in benzene.	:					
			8 volumes are miscible with 3 volumes of water; with 5 or more volumes of water an emulsion is formed.	1					
	1			1					
63			100 parts absolute alcohol dissolve 5:306 parts at 22:5° C.						
61	٠		Sparingly soluble in cold ether; dissolves easily in hot alcohol and ether.	'					
			Nearly insoluble in cold ether.						
78.8									
91 • 5 - 92 • 0		1		١,					
				1					

Digly cerides

Melting Point.		iling int.	Solubility.	
°C.	m.m. Pressure.	°C.		
	20-30 40 760	163-166 175-176 259-261	Easily soluble in water and alcohol; less readily in ether, and	
61			100 parts absolute alcohol dissolve 0.2097 parts at 20° C. 0.5040 ,, 27° C.	4
76.5			Sparingly soluble in cold alcohol; dissolves in 150 parts hot alcohol. Easily soluble in warm ether, chloroform, benzene, and petroleum ether.	(
75			Almost insoluble in cold ether; soluble in CS ₂ .	1
79.5			Almost insoluble in boiling alcohol.	
93.0				:
	1	1		10
47.0			Almost insoluble in cold alcohol; dissolves readily in ether and petroleum ether.	1
67.0			Sparingly soluble in ether.	1:
	•		ı	1

TABLE No. 3.—

			Molecular		ipecific ravity.	Solidi- fying Point.	Melting Point.
	Triglycerides.	Formula. Weigh		°C.	_	°C.	° C.
1	Acetin	$\mathrm{C_3H_5(O.C_2H_3O)_3}$	218	18	1.1603	•••	
2	Butyrin	$\mathrm{C_3H_5(O.C_4H_7O)_3}$	302	8	1.056		•
				20 40 40	1.0324 1.0143 0.9963	·	••• •••
3	Valerin, Iso	$\mathrm{C_3H_5(O.C_5H_9O)_3}$	344				
4	Caproin	$\mathrm{C_3H_5(O.C_6H_{11}O)_3}$	386	20 40	0.9817 0.9651	- 60 	- 25
5	Caprylin	${ m C_3H_5(O.C_8H_{15}O)_3}$	470	20 50 20 50 50 50 50 50 50 50 50 50	0.9494 0.9540 0.9382	- 15 	8.0-8.3
6	Caprin	C ₃ H ₅ (O.C ₁₀ H ₁₉ O) ₃	554	\$0 \$0	0.9231 0.9205 0.9057		31·1
7	Laurin	${ m C_3H_5(O.C_{12}H_{23}O)_3}$	638	50 190	0·8944 0·8687		46·4
8	Myristin	$C_3H_5(O, C_{14}H_{27}O)_3$	722	<u> 40</u>	0.8848		56.5
9	Palmitin	$\mathrm{C_3H_5(O.C_{16}H_{31}O)_3}$	806	80	0.8657	45-47	65·1
10	Stearin	C ₃ H ₅ (O. C ₁₈ H ₃₅ O) ₃	890	65·5	0·9235 0·8621	70·0 	71.6
11 12 13 14	Arachin	$\begin{array}{c} C_{3}H_{5}(O.C_{20}H_{39}O)_{3} \\ C_{3}H_{5}(O.C_{20}H_{51}O)_{3} \\ C_{3}H_{6}(O.C_{20}H_{50}O)_{3} \\ C_{3}H_{5}(O.C_{20}H_{59}O)_{3} \\ C_{3}H_{5}(O.C_{18}H_{33}O)_{3} \end{array}$	974 1226 1394 884		0.800		76 77 89
15 16	Elaïdin Erucin	$C_3H_5(O.C_{18}H_{33}O)_3$ $C_3H_5(O.C_{22}H_{41}O)_3$	884 1052				38 31·0
17 18	Brassidin	${^{\mathrm{C_3H_5(O.C_{22}H_{41}O)_3}}\atop{^{\mathrm{C_3H_5(O.C_{18}H_{33}O_2)_3}}}}$	1052 932		0.959- 0.984	- 6 0	47·0 - 25
19 20	Mixed Glycerides— Acetodiformin Oleodistearin	C ₃ H ₅ (O. C ₂ H ₃ O)(O. CHO) ₂ C ₃ H ₅ (O. C ₁₈ H ₃₃ O)(O. C ₁₈ H ₃₅ O) ₂	190 888	0 70	1·2490 0·8928	 40·8	 45-46
21	Elaïdodistearin	$C_3H_5(O.C_{18}H_{33}O)(O.C_{18}H_{35}O)_2$	888				61

Trigly cerides

Boili	ng Point.		fractive Index.	0.1.11/4-	0	
m.m. Pressure.	°C.	°C.	n _D .	Solubility.	Occurrence.	
40 760	172-172·5 258-259	15	1.4328	Miscible with alcohol, ether, chloroform, benzene. Insoluble in CS ₂ and petroleum ether. Slightly soluble in water.		1
10	186	20	1.4587	Soluble in absolute, and 85 per cent alcohol, and the usual organic solvents.	Cow butter.	2
760	285	20	1.48587	Nearly insoluble in water.		
		40	1.42785		l .	1
	•••	60	1.42015			
•••	•••		•••		Dolphin oil, porpoise oil.	3
•••		20	1.44265	Miscible with 85 per cent alcohol and the	Cow butter,	4
		40	1.43502	usual organic solvents at the ordinary	cocoa nut oil.	
•••	•••	60	1.42715	temperature.		
		20	1.44817	Miscible with 85 per cent alcohol and the	Cow butter,	5
•••	•••	40	1.44069	usual organic solvents at the ordinary	cocoa nut oil.	
		60	1.43316	temperature.		
		40	1.44461	Dissolves sparingly in absolute alcohol at the	Cow butter,	6
		60	1.43697	ordinary temperature, but readily in hot alcohol, as also in the usual organic solvents.	cocoa nut oil.	
		60	1.44039	Sparingly soluble in cold absolute alcohol;	Laurel oil.	7
		100	1.4246	easily soluble in the usual organic solvents,	Tangkallah fat,	
		60	1.44285	and in hot absolute alcohol. Very sparingly soluble in cold absolute alcohol; easily soluble in hot absolute	cocoa nut oil. Nutmeg butter, dika oil.	8
		80	1.43807	alcohol, and in the usual organic solvents. Almost insoluble in cold absolute alcohol, dissolves in hot alcohol and in the usual organic solvents.	Most fats and oils.	9
				Almost insoluble in cold absolute alcohol,	Most fats and	10
		80	1.43987	more soluble in hot absolute alcohol. Sparingly soluble in cold ether and petroleum ether; readily in the hot solvents. Dissolves readily in cold benzene and	oils.	
				chloroform.	,	١.,
	•••		•••	Very slightly soluble in ether.	Arachis oil.	11
	•••		•••	Very slightly soluble in ether.		12 13
•••	•••			Insoluble in dilute alcohol; more readily soluble in absolute alcohol than palmitin or stearin. Easily soluble in the usual organic solvents.	Most fats and oils.	14
				Nearly insoluble in alcohol; readily soluble in the usual organic solvents.	Rape oil.	15 16
760	360			Miscible with absolute alcohol and glacial acetic acid; soluble in 96 per cent alcohol and methyl alcohol. Sparingly soluble in petroleum ether.	Castor oil.	17 18
07	157	1			Mhammi 64	19
27	157		•••		Mkanyi fat, kokum butter.	20

TABLE No. 4.—Waxes

Occurrence.		Spermaceti	Opium wax	Deeswax	Chinese wax Cochineal wax	Blood serum Blood serum		
Solubility.		Nearly insoluble in cold alcohol; easily soluble Spermaceti		:	Nearly insoluble in cold alcohol or ether; dis- Cochinese wax	solves with great uniformly in cold benzene and glacial acetic acid Soluble in ether, chloroform, and benzene; but	only sparingly soluble in alcohol Nearly insoluble in alcohol; slightly soluble	in curer Very slightly soluble in boiling alcohol
Melting Point.	°C.	55	59 79	55-60	82.5 106	77-78 41	65	72 85·5
Solidi- fying Point.	°.	:	92	: :	: :	::	:	: :
Molecular Weight.		480	508 620		_	610	638	638 764
Formula.		. C16H33.O.CO.C15H31	C ₁₈ H ₃₇ . 0. CO. C ₁₆ H ₃₁ C ₂₆ H ₆₈ . 0. CO. C ₁₆ H ₃₁	Cla H 33. O. CO. Cla H 35	$C_{36}H_{63}$. O. CO. $C_{26}H_{13}$ $C_{30}H_{60}$ (O. $C_{31}H_{61}O_{2})_2$	C ₂₆ H ₄₅ . 0. CO. C ₁₅ H ₃₁ C ₂₆ H ₄₅ . 0. CO. C ₁₇ H ₃₃	C28H43.0.CO.C17H38	C ₂₆ H ₄₈ . 0. CO. C ₁₇ H ₃₈ C ₂₆ H ₄₈ . 0. CO. C ₂₆ H ₆₈
Waxes.		Cetyl Palmitate, Cetin		Cetyl Stearste	Ceryl Cerotate Cocceryl Coccerate, Coccerin .	Cholesteryl Palmitate Cholesteryl Oleate	Cholesteryl Stearate	Isocholesteryl Stearate Cholesteryl Cerotate

TABLE No. 5.—Saponification of a Pure Triglyceride (Molecular Weight 860)

OLD TE	HEORY.	New Theory.				
Fatty Acids.	Glycerol.	Fatty Acids.	Glycerol.			
Per cent.	Per cent.	Per cent.	Per cent.			
95.52	10.85	95.52	10.85			
95.31	10.82	95.69	10.429			
95.09	10.78	95.88	9.975			
94.86	10.72	96.07	9.538			
94.65	10.58	96:31	8.910			
94.45	10.27	96.68	8.019			
94.37	9.82	96.80	7.767			
94.69	8.47	97 · 94	4.985			
95.77	6:34	98.51	3.681			
97:33	3.86	99:24	1.837			
97 • 54	3.32	99.39	1.466			
98.20	2.45	99.52	1.115			
98.98	1.21	99.69	0.743			
99.53	0.67	99.85	0.372			
100.00	0.00	100.0	0.00			

TABLE No. 6.

	Acids.				Romania Molecula	Molecular	S) Gi	pecific avity.	Solidi- fying Point.	Melting Point.	
		Aci	ds.			Formula.	Weight.	°C.	-	*C.	°C.
1	Acids, C _n H _{2n}	O ₂ -	-			$\mathrm{C_2H_4O_2}$	60	15	1.0515	+17.5	
2	Butyric	•	•	•	•	$\mathrm{C_4H_9O_2}$	88	86 0 14 19:1 20 89:9	1:0064 0:9746 0:9580 0:9599 0:9590 0:8983	- 19 	- 6.5 - 7.9
3	Valeric, Iso	-	. '	•	•	$C_5H_{10}O_2 = (CH_3)_2.$ $CH. CH_2. CO_2H$	102	1 <u>51:5</u> 0 2 0	0.8141 0.9467 0.9310	- 57	- 51
4	Caproic		•	•		$C_6H_{12}O_2$	116	<u>३०</u> 40	0·9274 0·917	below - 18	
5	Caprylic	•	•	•	•	$\mathrm{C_8H_{16}O_2}$	144	0 20	0.9270 0.9100	12 	16 · 5
6	Capric	•	•		•	$C_{10}H_{20}O_{2}$	172	40	0.8858	•••	31:3-31:4
7 8	Umbellulic Lauric		:	:	•	C ₁₁ H ₂₂ O ₂ C ₁₂ H ₂₄ O ₂	186 200	20 43:6 60 78:5	0.883 0.875 0.8642 0.8495		21-23 43·6
9	Myristic	•	•	•	•	C ₁₄ H ₂₈ O ₂	228	53:8 60	0.8622 0.8584	•••	53·8
10 11	Isocetic . Palmitic	•	•	:	:	$C_{15}H_{30}O_{2}(?)$ $C_{16}H_{32}O_{2}$	242 256	 62 75:8 80	 0·8527 0·8465 0·8412	62·6 	55 62·62
12	Daturic				•	$C_{17}H_{34}O_{2}$	270			•••	54.5; 57
13	Stearic	•	•	•		C ₁₈ H ₃₆ O ₂	284	11 <u>59:2</u> 80	1.0000 0.8454 0.8386	69·3 	69·32
14	Arachidic		٠	•	•	${ m C_{20}H_{40}O_2}$	312				77
15	Behenic		•			$\mathrm{C}_{22}\mathrm{H}_{44}\mathrm{O}_2$	340			79-77	83-84
16 17	Lignoceric Carnaübic			•		$C_{24}H_{48}O_2 \\ C_{24}H_{48}O_2$	368 368		 	 69-67	80·5 72·5
18 19	Hyænic Cerotic		:	:		$C_{25}H_{50}O_{2} \\ C_{26}H_{52}O_{2}$	382 396	7.9	0·8359		77-78 77·8
20	Melissic				•	$C_{30}H_{60}O_{2}$	452				91

-Fatty Acids

Boiling Point.		Refractive Index.		2	_	
m.m. Pressure.			$n_{\mathrm{D}}.$	Solubility.	Occurrence.	
760	118·1			Miscible with water, alcohol and ether in all proportions	Macassar oil.	1
760	162.3	20	1.39906		Cow butter.	2
10.48	72·4			Dissolves in 23.6 parts of water	Porpoise oil, dol-	3
45·92 760 732	199·2 173·7 199·7	20	1.41635	Not miscible with water, though slightly	phin oil. Cow butter.	4
10 761	123·5-124·3 236-237	20	1.42825	soluble in it Soluble in 400 parts of boiling water; very sparingly soluble in cold water	cocoa nut oil. Cow butter, cocoa nut oil,	5
13 100 760	153-154 199·5-200 268-270	40	1.42855	Sparingly soluble in boiling water; nearly insoluble in cold water	human fat. Cow butter, cocoa nut oil.	6
760 0 15 16 100	275-280 102 176 180 225	 60	1:42665	Very slightly soluble in boiling water	Chaulmoogra oil. Laurel oil, cocoa nut oil.	7 8
0 15 100	121-122 196·5 250·5	60	1.43075	Completely insoluble in water; dissolves with difficulty in cold alcohol and ether	Nutmeg butter; dikaoil, quince oil, cocoa nut oil. Sperma- ceti, wool wax.	9
 0 15 100	138-139 215 271:5	 80	1.42693	Not readily soluble in cold alcohol, nor in cold petroleum ether. Easily soluble in both menstrua in the hot	Curcas oil. Most animal and vegetable fats; beeswax, sper-	10 11
15	223-225				maceti. Seeds of thorn- apple.	12
0 15 100 760	154.5-155.5 232 291 360	80	1.43003	Less soluble in cold alcohol than palmitic acid	Most animal and vegetable fats.	13
					Arachis oil, ram- butan tallow, rape oil, maize	14
				100 parts alcohol of 90 per cent by volume dissolve at 17° C.:0'102 grms. 100 parts ether dissolve at 16° C.:1'922 grms.	oil. Ben oil.	15
				Very sparingly soluble in cold alcohol Sparingly soluble in cold methyl alcohol	Arachis oil. Carnaüba wax, wool wax.	16 17
				Almost insoluble in cold alcohol; soluble in boiling alcohol	Carnaüba wax, beeswax.	18 19
	•••			Almost insoluble in ether and methyl alcohol	Beeswax.	20

TABLE No. 6, con-

								TABLE NO. 0, WIF					
		Acids				Formula.	Molecular	Gı	ecific avity.	Solidi- fying Point.	Melting Point.		
		Acius	•			rormua.	Weight.	°C.	-	°C.	°C.		
	Acids, C,H2n	0.											
1	Tiglie .		•			$\mathrm{C_5H_8O_2}$	100	. 7.6	0.9641		64.5		
2	Hypogæic		•			$\mathrm{C_{16}H_{30}O_2}$	254		•••		33-34		
3 4 5	Gaïdic Physetoleic Lycopodic		:	:		$^{\mathrm{C_{16}H_{30}O_2}}_{\mathrm{C_{16}H_{30}O_2}}$ $^{\mathrm{C_{16}H_{30}O_2}}_{\mathrm{C_{16}H_{30}O_2}}$	254 254 254				39 30 		
6	Oleic .		•	٠	-	$C_{18}H_{34}O_2$	282	115 20 30 50	0.8908 0.898 0.895 0.889 0.875	4 	14 		
7	Elaïdic			•		$\mathrm{C_{18}H_{34}O_2}$	282	78-4	0.8540 0.8505		44·5		
8	Isooleic					$\mathrm{C_{18}H_{34}O_{2}}$	282	•••			44-45		
9	Rapic .					$\mathrm{C_{18}H_{34}O_{2}}$	282						
10	Doeglic	•	•	•		$C_{10}H_{\infty}O_{0}$	296		•••		•••		
11 12	Jecoleic Erucic	•		:		$C_{19}^{19}H_{36}^{30}O_{2}^{2}$ $C_{21}H_{42}O_{2}$	296 338	₽₽	0.8602		33-34		
13	Brassidic		•			$\mathrm{C}_{22}^{\cdot}\mathrm{H}_{42}\mathrm{O}_2$	338	57:1	0.8585	56	65-66		
14	Isoerucic	•				${\rm C}_{22}{\rm H}_{42}{\rm O}_2$	338	 		52-51	54-56		
	Acids, C _n H ₂ ,	,_,O,	<u>-</u>										
15	Elæomarga				.	$C_{17}H_{30}O_{2}$	266				48		
16 17	Elæosteario Linolic	•	•			${ m C_{17}^{11}H_{30}^{30}O_{2}^{2}} \ { m C_{18}H_{32}O_{2}}$	266 280	 14	0.9206	below	71 		
18	Tariric	•	•	•	.	$\mathrm{C_{18}H_{32}O_2}$	280			-18 	50.5		
19	Telfairic	•	•			$\mathrm{C_{18}H_{32}O_2}$	280	•••		6	•••		
	Acids, C _n H ₂ ,	₆ O,	<u></u>										
20 21	Linolenic Isolinolenic	; :	:	•		$^{\mathrm{C_{18}H_{30}O_{2}}}_{\mathrm{C_{18}H_{30}O_{2}}}$	278 278	18:8	0.9228		•••		
22	Acids, C _n H ₂ , Isanic .	8O; •		•		${ m C_{14}H_{20}O_{2}}$	220				41		
		_				~ · · · · · · · · · · · · · · · · · · ·							

tinued.—Fatty Acids

Boili	ng Point.		efractive Index.	- Solubility.	Occurrence.	
m.m. Pressure.	°C.	° C.	n _D .	Solubility.	Occurrence.	
760	198.5			Dissolves sparingly in cold, easily in hot water	Croton oil.	1
10 15	230 236			water	Arachis oil, maize oil.	1
					Caspian seal oil. Spores of Lyco-	4
0 10 15 30 50 100 0 10 15 30 50	153 223 232·5 249·5 264·0 285·5-286 154 225 234 251·5 266	15 20 30 40 50 60	1.4638 1.4620 1.4585 1.4546 1.4509 1.4471	Insoluble in water; readily soluble in al- cohol, even if somewhat dilute	podium. Most animal and vegetable oils.	• 7
				Very easily soluble in alcohol, less readily in ether	Distilled stearine.	8
•••		l	 		Rape oil.	5
	•••				Arctic sperm oil.	10
 0 10 15 30	179 254 5 264 281 160			Very easily soluble in alcohol	Cod liver oil (?). Rape oil, mustard seed oils, fish oils (?).	13
10 15 30	256 265 282			Sparingly soluble in alcohol and ether		14
				•		
•••					Chinese wood oil.	16
•••				Dissolves readily in alcohol and ether	Drying oils.	17
•••					Fat from Pic- ramnia.	18
13	220-225				Koëme oil.	19
•	 		:::	 	Drying oils. Linseed oil.	20
				Readily soluble in alcohol and the usual organic solvents	Seeds from I'sano.	2

TABLE No. 6, con-

1		1			1		
	Acids.	Formula.	Molecular	S G	pecific ravity.	Solidi- fying Point.	Melting Point.
	ACING.	Toma.	Weight.	° C.	-	°C.	°C.
1	Therapic (?)	$C_{17}H_{26}O_{2}$	262				
.2	, š	$C_{90}H_{29}O_{9}$	304				•••
3	•	$C_{24}^{32}H_{40}^{32}O_{2}^{3}$	360				•••
	Acids, C _n H _{2n} O ₃ —						
4	Lanopalmic	C ₁₆ H ₃₂ O ₃	272			85-83	87-88
5	Cocceric	C ₃₁ H ₆₂ O ₃	482				92-93
1	Acids, C _n H _{2n-2} O ₃ —						: I
6 7	Ricinoleic	C ₁₈ H ₃₄ O ₃	298	15.5	0.9509	-610	4-5
8	Ricinelaïdic	$C_{18}H_{34}O_3$ $C_{18}H_{34}O_3$	298 298				52-53 81
9	į.	$C_{18}H_{34}O_3$	298		0.8931		,
	Acids, C _n H _{2n} O ₄ —						,
	Monobasic Acids—						,
10	Dihydroxystearic	C ₁₈ H ₃₆ O ₄	316	,			141-143
11	Lanoceric	$\mathrm{C_{30}H_{60}O_4}$	484			103-101	104-105
12	Acids, C _n H _{2n-2} O ₄ — Dibasic Acids— Japanic	$\mathrm{C}_{20}\mathrm{H}_{40}(\mathrm{COOH})_2$	370		>1.0		11 7 · 7 - 117 · 9
	APPENDIX						!
•	I. Hydroxylated Acids— (a) Monohydroxylated Acids,					İ	· .
- 0	$C_nH_{2n}O_3$ —	0.77.0.4077					i
13 14	eta-Hydroxystearic a-Hydroxystearic	$C_{18}H_{35}O_2(OH)$ $C_{18}H_{35}O_2(OH)$	300 300			68-65	83-85 77-79
	_			•••			į
15	Lactone of γ-Hydroxystearic (Stearolactone)	C ₁₈ H ₃₄ O ₂ · ·	282	•••	•••		47-48
	(b) Dihydroxylated Acids,						<u>:</u>
16	C _n H _{2n} O ₄ — Tigliceric (Dihydroxytiglic)	$C_5H_8O_2(OH)_2$	104				
10	righterio (Dinjureajughe)	O ₅ 118O ₂ (O11) ₂	134	•••	•••		88
17	Di-hydroxypalmitic	$C_{16}H_{30}O_{2}(OH)_{2}$	288			İ	115
18	Di-hydroxystearic	$C_{18}^{10}H_{34}^{30}O_{2}(OH)_{2}^{2}$	316			122-119	136.5
19	Di-hydroxystearidic	C ₁₈ H ₃₄ O ₂ (OH) ₂	316			!	99-100
20	p-Di-hydroxystearic	$C_{18}H_{34}O_2(OH)_2$	316				79
21 22	Di-hydroxyjecoleic	$C_{10}H_{96}O_{9}(OH)_{0}$	330			,	114-116
42	Di-hydroxybehenic	$C_{22}H_{42}O_2(OH)_2$	372				132-133
23 24	Iso-Di-hydroxybehenic	$C_{22}H_{42}O_2(OH)_2 C_{22}H_{42}O_2(OH)_2$	372 372			88-87 82-80	99-100 86-88

tinued .- Fatty Acids

Boiling Point.		Point. Ref			0	
m.m. Pressure.			$n_{ m D}$	Solubility.	Occurrence.	
					Cod liver oil.	1
	•••		•••		Cod liver oil.	2
	•••		•••		Cod liver oil.	3
				Insoluble in water, but dissolves in it in presence of alcohol on boiling; soluble in the usual organic solvents	Wool wax.	4
				Dissolves sparingly in cold alcohol, ether, benzene, petroleum ether, and glacial acetic acid	Cochineal wax.	5
15	250		•••	Easily soluble in alcohol and ether	Castor oil.	6 7
15	250-252					8
	•••		•••		Quince oil.	9
				T. 111 to the material was about home	Coston oil	
	•••		•••	Insoluble in ether, petroleum ether, benzene; dissolves in boiling alcohol	Castor oil.	10
			•••	Sparingly soluble in ether and warm benzene	Wool wax.	11
				Sparingly soluble in the usual solvents	Japan wax.	12
			 	Sparingly soluble in alcohol and ether More readily soluble in ether, and less in absolute alcohol than the β-acid		13 14
	••• .			Insoluble in water; dissolves easily in al- cohol ether, and petroleum ether		15
				Easily soluble in water; soluble in alcohol and acetone; insoluble in petroleum ether, chloroform, and benzene		16
			•••	Readily soluble in alcohol and ether Completely insoluble in water; not readily soluble in cold alcohol; sparingly soluble in ether		17 18
···	••••			Easily soluble in alcohol and ether		19
				Dissolves readily in warm alcohol; insoluble in cold ether		21 22
				!		23 24

PART

TABLE No. 6, con-

	Acids,	Formula.	Molecular	Sp Gr	ecific avity.	Solidi- fying Point.	Melting point.
	220.03.	r ormana.	Weight.	°C. –		°C.	° C.
	(c) Trihydroxylated Acids, C _n H _{2n} O ₅ —						
1	Tri-hydroxystearic	C ₁₈ H ₃₃ O ₂ (OH) ₃	332		••		140-142
2 3	α-Iso-tri-hydroxystearic . β-Iso-tri-hydroxystearic .	${ m C_{18}H_{33}O_2(OH)_3} \ { m C_{18}H_{33}O_2(OH)_3}$	332 332		 		110-111 114-115
:	(d) Tetrahydroxylated Acid, C _n H _{2n} O ₆ —						
4	Sativic	$\mathrm{C_{18}H_{32}O_{2}(OH)_{4}}$	348	•••	•••		173
	(e) Hexahydroxylated Acids, C _n H _{2n} O ₈ —	•					
5	Linusic	$\mathrm{C_{18}H_{30}O_{2}(OH)_{6}}$	380		•••		203-205
6	Isolinusic	$\mathrm{C_{18}H_{30}O_{2}(OH)_{6}}$	380	,	•••		173-175
	II. Dibasic Acids—						
7	Suberic	$\mathrm{C_6H_{12}(COOH)_2}$	174				140
8	Azelaic	$\mathrm{C_7H_{14}(COOH)_2}$	188		•••		106.2
9	Sebacic	$\mathrm{C_8H_{16}(COOH)_2}$	202				133-133-5

tinued.—Fatty Acids

Boilin	ng Point.		fractive ndex.	0.1.1.	0	
ın.m. Pressure.	*C.	°C.	n _D .	Solubility.	Occurrence.	
				Dissolves with difficulty in hot water; likewise in cold alcohol and ether; warm alcohol and glacial acetic acid dissolve it readily. Insoluble in carbon bisulphide, chloroform, benzene, and petroleum ether		1
				Readily soluble in ether and benzene Sparingly soluble in hot water, ether, chloroform, and petroleum ether; readily soluble in alcohol	·	2 3
				Very sparingly soluble in hot water; in- soluble in cold water, ether, chloroform, carbon bisulphide, and benzene. Dis- solves readily in hot alcohol and glacial acetic acid		4
	•••			More soluble in water than sativic acid. Insoluble in ether; sparingly soluble in alcohol	·	5
				Sparingly soluble in cold water; readily soluble in hot water and hot alcohol. Insoluble in ether, benzene, carbon bisulphide and chloroform	·	6
0 10 15 50	152·5 219·5 230 258·5			Dissolves sparingly in cold water; 100 parts ether dissolve 0.809 parts at 15° C.; almost insoluble in chloroform		7
100 0 10 15 50	279·0 158 225·5- 237 265			Sparingly soluble in cold water; 100 parts ether dissolve 2.68 parts at 15° C. Very easily soluble in alcohol		8
100 0 10 15 50 100	286.5 164 232 243.5 273 294.5		•••	Sparingly soluble in cold water; readily soluble in alcohol and ether		9

TABLE No. 7.

			Formula.	Mole- cular	Speci	fic Gravity.	Solidi- fying Point.
				Weight.	°C.	-	°C.
	Alcohols, C _n H _{2n+2} O—						
1	Cetyl alcohol (Ethal)	•	$\mathrm{C_{16}H_{34}O}$	242	49:5. 50 79:7	0.8176 0.8105 0.7984	
2	Octodecyl alcohol .		${ m C_{18}H_{38}O}$	207	98.7 59 70 99.1	0.7837 0.8124 0.8048 0.7849	
3	Carnaübyl alcohol .	.	$C_{24}H_{50}O$	354			68-67
4	Ceryl alcohol		C~H~O	382			
5 6	Isoceryl alcohol Myricyl (melissyl) alcohol	•	$C_{27}^{26}H_{56}^{-54}O$ $C_{30}H_{62}^{-}O$	396	• • •	•••	• • • • • • • • • • • • • • • • • • • •
U	Myricyi (menssyi) alconor	•	C ₃₀ H ₆₂ C	438	•••	•••	
	Alcohols, C _n H _{2n} O—						
7	Lanolin alcohol (?) .	.	$C_{12}H_{24}O$	182	•••		
	Alcohols, C _n H _{2n+2} O ₂ —						
8	Ŷ		$\mathrm{C}_{25}\mathrm{H}_{52}\mathrm{O}_2$	384	••:	•••	
9 10	Cocceryl alcohol . Psyllostearyl alcohol .		$^{\mathrm{C_{30}H_{62}O_{2}}}_{\mathrm{C_{33}H_{68}O_{2}}}$	454 496			
	1 sy nostear yr arconor.	.	O ₃₃ 11 ₆₈ O ₂	490	•••	•••	•••
	Alcohols, C _n H _{2n+2} O ₃ —						
11	Glycerol	.	$C_3H_8O_3$	92	ᄹ	1.26358	l
	_	- 1	• • •		18	1.26468	
					17:8 28	1.2620 1.26348	
	Alcohols, C _n H _{2m-8} O ₂ —				•		
12	Cholesterol	$\cdot $	$\mathrm{C}_{26}\mathrm{H}_{44}\mathrm{O}$	372		1.067	
							<u> </u>
13	Isocholesterol	$\cdot $	C ₂₆ H ₄₄ O	372		•••	,
14	Phytosterol	٠	$C_{26}H_{44}O$	372	•••	•••	•••
			·	!			<u> </u>

---Alcohols

Melting Point.	Boiling	g Point.	Solubility.	Occurrence.	
*C.	m.m. Pres- sure.	°C.	·		
50 	0 15	119 189·5	Dissolves in alcohol; easily soluble in ether and benzene	Spermaceti.	1
59	760 15	344 210·5		Spermaceti.	2
68-69 79 62 85;88			Soluble in alcohol Soluble in alcohol Soluble in alcohol Nearly insoluble in cold alcohol, easily soluble in hot alcohol	Wool wax. Chinese wax. Wool wax. Bees wax.	3 4 5 6
102-104			Insoluble in ether, sparingly soluble in cold alcohol, chloroform, and benzene	Wool wax.	7
103·5— 103·8			Dissolves sparingly in boiling petrol- eum ether; somewhat more readily in ether and in benzene	Carnaüba wax.	8
101-104 86-87			Dissolves in hot alcohol Almost insoluble in ether; sparingly soluble in petroleum ether; easily soluble in benzene	Cochineal wax.	9 10
crystals melt at 20° C.	12·5 50 760	179·5 210 290	Miscible with alcohol and water; spar- ingly soluble in ether; insoluble in petroleum ether, chloroform, carbon bisulphide, and benzene	Constituent of all fats and fatty oils.	11
148.5		•••	Insoluble in water; sparingly soluble in cold alcohol; easily soluble in ether, chloroform, carbon bisulphide, less readily in petroleum ether	Wool wax.	12
137-138 132-134	•••			Wool wax. Vegetable fats and oils.	13 14

TABLE No. 8.—Freezing Mixtures

		Required per 100 parts of Snow, to produce	Temperature.
13.2	parts	potassium nitrate and 26 parts ammonium chloride .	- 17:8
33	,,	sodium chloride	- 21:3
52	,,	ammonium nitrate and 55 parts sodium nitrate	- 25.8
9	,,	potassium nitrate and 67 parts ammonium rhodanate .	-28.2
13	,,	ammonium chloride and 37.5 parts sodium nitrate	- 30.7
32	,,	potassium nitrate and 59 parts ammonium rhodanate .	- 30.6
2	,,	potassium nitrate and 112 parts potassium rhodanate .	- 34 · 1
39.5	,,	ammonium rhodanate and 54.5 parts sodium rhodanate .	- 37 · 4
143	,,	crystallised calcium chloride ($CaCl_2 + 2H_2O$)	- 50.0
			1

TABLE No. 9 see page 26.

Table No. 10.—Iodine Values of Unsaturated Fatty Acids and of their Glycerides

		Iodine Value	Iod	Iodine Value of		
Fatty Acid.	Formula.	of Fatty Acids.	Monoglyceride.	Diglyceride.	Triglyceride.	
Tiglic	$C_5H_8O_2 \\ C_{12}H_{22}O_2 \\ C_{14}H_{26}O_2$	254·00 128·28 112·39	145·98 93·38 84·67	198·43 112·39 100·00	225·44 120·57 106·42	
Hypogæic Physetoleic	C ₁₆ H ₃₀ O ₂	100.00	77:44	90.07	95-25	
Lycopodic J Asellic Oleic	$C_{17}H_{32}O_2$	94.78	74.27	85.81	90.20	
Elaïdic Isooleic	C ₁₈ H ₃₄ O ₂	90.07	71.35	81.93	86.20	
Rapic J Dæglic J Jecoleic J	C ₁₉ H ₃₆ O ₂	85.81	68.65	78:39	82.29	
Erucic Brassidic }	$C_{22}H_{42}O_2$	75:15	61.65	69:40	72.43	
Isœrucic J Elæomargaric .	$C_{17}H_{30}O_2$	190.98	149.41	172.79	182.29	
Linolic Tariric Millet Oil	C ₁₈ H ₃₂ O ₂	181.42	143.50	164.93	173.58	
Linolenic Isolinolenic Jecoric	C ₁₈ H ₃₀ O ₂	274·10	216:47	249.02	262·15	
Isanic	${^{\mathrm{C}_{14}\mathrm{H}_{20}\mathrm{O}_2}_{\mathrm{C}_{17}\mathrm{H}_{26}\mathrm{O}_2}}$	461·82 387·78	345·57 302·38	409·67 350·34	436·67 369·90	
Ricinoleic Ricinisoleic	C ₁₈ H ₃₄ O ₃	85.23	68:28	77:91	81.76	

TABLE No. 9.—Saponification Values, Percentages of Insolut

	1						
		Mono	GLYCERIDE.	_		1]
	Glyceride of Acid.	Formula.	Molecular Weight.	Saponi- fication Value.	In- soluble Fatty Acids.	Gly- cerol.	Formula.
1	Acetic	C ₃ H ₅ (OH) ₂ (O.C ₂ H ₃ O)	134	428.7	0	68.65	$C_3H_5(OH)(O \cdot C_2H_3O)_2$
2	Butyric	$C_3H_5(OH)_2(O . C_4H_7O)$	162	346.3	0	56.80	$C_3H_5(OH)(O \cdot C_4H_7O)_2$
3	Valeric	$\mathrm{C_3H_5(OH)_2(O.C_5H_9O)}$	176	318.8	0	52.27	$\mathrm{C_3H_5(OH)(O.C_5H_9O)_2}$
4	Caproie	$\mathrm{C_3H_5(OH)_2(O.C_6H_{11}O)}$	190	295.3	0	48.42	$C_3H_5(OH)(O \cdot C_6H_{11}O)_2$
5	Caprylic	${ m C_3H_5(OH)_2(O.C_8H_{15}O)}$	218	257:3		42.20	$C_3H_5(OH)(O \cdot C_8H_{15}O)_2$
6	Capric	${ m C_3H_5(OH)_2(O.C_{10}H_{19}O)}$	246	228.1		37.40	C ₃ H ₅ (OH)(O . C ₁₀ H ₁₉ O ¹ ₂
7	Lauric	${ m C_3H_5(OH)_2(O\cdot C_{12}H_{23}O)}$	274	204.7		33.58	$C_3H_5(OH)(O . C_{12}H_{23}O)_2$
8	Myristic	${ m C_3H_5(OH)_2(O.C_{14}H_{27}O)}$	302	185 · 8	75.50	30.46	C ₃ H ₅ (OH)(O.C ₁₄ H ₂₇ O ₂
9	Palmitic	${ m C_3H_5(OH)_2(O.C_{16}H_{31}O)}$	330	170.0	77.58	27.88	C ₃ H ₅ (OH)(O . C ₁₆ H ₃₁ O) ₂
10	Stearic	${ m C_3H_5(OH)_2(O.C_{18}H_{85}O)}$	358	156.7	79:33	25.70	C ₃ H ₅ (OH)(O.C ₁₈ H ₃₅ O) ₂
11	Oleic	${ m C_3H_5(OH)_2(O.C_{18}H_{33}O)}$	356	157.6	79:22	25.85	C ₃ H ₅ (OH)(O.C ₁₈ H ₃₃ O ₂
12	Linolic	${ m C_3H_5(OH)_2(O.C_{18}H_{31}O)}$	354	158.5	79·10	25.99	C ₃ H ₅ (OH)(O.C ₁₈ H ₃₃ O)
13	Linolenic	${ m C_3H_5(OH)_2(O.C_{18}H_{29}O)}$	352	159-9	78.98	26.14	C ₃ H ₅ (OH)(O.C ₁₈ H ₂₉ O) ₂
14	Ricinoleic	${ m C_3H_5(OH)_2(O.C_{18}H_{33}O_2)}$	372	150.9	80.12	24.74	C ₃ H ₅ (OH)(O.C ₁₈ H ₃₃ O ₂ ,
15	Erucic	$C_3H_5(OH)_2(O.C_{22}H_{41}O)$	412	136.2	82.04	22.33	$C_3H_5(OH)(O \cdot C_{22}H_{41}O \cdot$
16	Cerotic	${ m C_3H_5(OH)_2(O.C_{26}H_{51}O)}$	470	119.3	84.26	19.58	C ₃ H ₅ (OH)(O.C ₂₆ H ₅₁ O.
17	Hydroxystearic .	${ m C_3H_5(OH)_2(O.C_{18}H_{35}O_2)}$	374	150.0	80.20	24.60	C ₃ H ₅ (OH)(O.C ₁₈ H ₃₅ O ₂
18	Dihydroxystearic .	${ m C_3H_5(OH)_2(O.C_{18}H_{35}O_3)}$	390	143.9	81.02	23.59	$C_3H_5(OH)(O \cdot C_{18}H_{35}O_3)$
19	Trihydroxystearic	$\mathrm{C_{3}H_{5}(OH)_{2}(O.C_{18}H_{35}O_{4})}$	406	138.2	81.78	22.66	C ₃ H ₅ (OH)(O . C ₁₈ H ₃₅ O ₄
20	Sativic	${ m C_3H_5(OH)_2(O.C_{18}H_{35}O_5)}$	422	133.0	82.48	21.80	$C_3H_5(OH)(O \cdot C_{18}H_{35}O_5)$
21	Linusic	$C_3H_5(OH)_2(O.C_{18}H_{35}O_7)$	454	123.6	83.70	20.26	C ₃ H ₅ (OH)(O. C ₁₈ H ₃₅ O ₇
22	Acid, C ₁₇ H ₃₄ O ₂ .	${ m C_3H_5(OH)_2(O.C_{17}H_{33}O)}$	344	163.1		26.74	C ₃ H ₅ (OH)(O.C ₁₇ H ₃₃ O' ₃
23	Acid, M. W. = 275	•••	349	160.8		26.36	$C_3H_5(OH)(OR)_2(R=27)$
1			1	Į.	1 /	1 7	1

utty Acids, and Yields of Glycerol from Mono-, Di-, and Tri-glycerides

1

								· · · · · · · · · · · · · · · · · · ·	
YCERIDE				Tı	RIGLYCERIDE.				
olecular Veight.	Insoluble Fatty Acids.	Saponi- fication Value.	Glycerol.	Formula.	Molecular Weight.	Insoluble Fatty Acids.	Saponi- fication Value.	Glycerol.	
176	0	637.6	52.27	C ₃ H ₅ (O . C ₂ H ₃ O) ₃	218	0	772.0	42.20	1
232	0	483.7	39.66	$\mathrm{C_3H_5(O.C_4H_7O)_3}$	302	0	557.3	30.46	2
260	0	431.5	35.38	$\mathrm{C_3H_5(O.C_5H_9O)_3}$	344	0	489.2	26.74	3
288	0	389.6	31.94	${ m C_3H_5(O.C_6H_{11}O)_3}$	384	0	436.1	23.96	4
344	•••	326 · 2	26.74	$\mathrm{C_3H_5(O.C_8H_{15}O)_3}$	470		358.1	19.58	5
400		280.5	23.00	${ m C_3H_5(O.C_{10}H_{19}O)_3}$	552	•••	303.7	16.67	6
456		246.1	20.18	${ m C_3H_5(O.C_{12}H_{23}O)_3}$	638	•••	263 ·8	14.42	7
512	89.05	219.1	17:97	${ m C_3H_5(O.C_{14}H_{27}O)_3}$	722	94.75	233·1	12.74	8
568	90.15	197.6	16.20	${ m C_3H_5(O.C_{16}H_{31}O)_3}$	806	95.29	208.8	11.42	9
624	91.02	179.8	14.74	${ m C_3H_5(O.C_{18}H_{35}O)_3}$	890	95.73	189.1	10:34	10
620	90.95	181.0	14.84	${ m C_3H_5(O.C_{18}H_{33}O)_3}$	884	95.70	190.4	10.41	11
616	90.90	182·1	14.93	${ m C_3H_5(O.C_{18}H_{33}O)_3}$	878	95.67	191.7	10.48	12
612	90.83	1,83 · 3	15.03	${ m C_3H_5(O.C_{18}H_{29}O)_3}$	872	95.63	193.0	10.55	13
652	91.43	172·1	14.11	${ m C_3H_5(O.C_{18}H_{33}O_2)_3}$	932	95.93	180.6	9.87	14
732	92.35	153:3	12.57	${ m C_3H_5(O.C_{22}H_{41}O)_3}$	1052	96.39	160.0	8.74	15
848	93.40	132.3	10.85	${ m C_3H_5(O.C_{26}H_{51}O)_3}$	1226	96.90	137.3	7.50	16
656	91.47	171.1	14.03	${ m C_3H_5(O.C_{18}H_{35}O_2)_3}$	938	95.95	179•4	9.81	17
688	91.87	163·1	13:37	${ m C_3H_5(O.C_{18}H_{35}O_3)_3}$	986	96.15	170.7	9.33	18
720	92.23	155.9	12.78	${ m C_3H_5(O.C_{18}H_{35}O_4)_3}$	1034	96.35	162.8	8.90	19
752	92.56	149.2	12.24	${ m C_3H_5(O.C_{18}H_{35}O_5)_3}$	1082	96.50	155.0	8.51	20
316	93.15	137.5	11.28	$C_3H_5(O \cdot C_{18}H_{35}O_7)_3$	1178	96.77	142·4	7.81	21
596		188:3	15.44	${ m C_3H_5(O.C_{17}H_{33}O)_3}$			· 	10.85	22
306		185.2	15.18	$C_3H_5(OR)_3(R=274)$				10.66	23
			<u> </u>						

Table No. 11 $\textit{Logarithms for the Quotient } \frac{0.2}{\text{cc. Thiosulphate}}$

cc. Thio- sulphate.	$Log. \frac{0.2}{cc}.$	cc. Thio- sulphate.	$\mathbf{Log.} \ \frac{0.2}{\mathbf{cc}}.$
14.0	1549020	16.3	0888424
14.05	1533537	16.35	0875122
14.1	1518109	16.4	0861862
14.15	1502736	16.45	0848641
14.2	1487417	16.5	0835461
14.25	1472151	16.55	0822320
14.3	1456940	16.6	0809219
14.35	1441781	16.65	0796158
14.4	1426675	16.7	0783135
14.45	1411622	16.75	0770152
14.5	1396620	16.8	0757207
14.55	1381670	16.85	0744301
14.6	1366771	16.9	0731433
14.65	1351924	16.95	0718603
14.7	1337127	17.0	0705811
14.75	1322380	17.05	0693056
14.8	1307683	17.1	0680339
14.85	1293035	17.15	0667659
14.9	1278437	17.2	0655016
14.95	1263888	17.25	0642409
15.0	1249387	17.3	0629839
15.05	1234935	17.35	0617305
15.1	1220531	17.4	0604808
15.15	1206174	17.45	0592346
15.2	1191864	17.5	0579920
15.25	1177602	17.55	0567529
15.3	1163386	17.6	0555173
15.35	1149216	17.65	0542853
15.4	1135093	17.7	0530567
15.45	1121015	17.75	0518316
15.5	1106983	17.8	0506100
15.55	1092996	17.85	0493918
15.6	1079054	17.9	0481770
15.65	1065157	17.95	•0469655
15.7	1051303	18.0	0457575
15.75	1037494	18.05	0445528
15.8	1023729	18.1	0433514
15.85	1010007	18.15	0421534
15.9	0996329	18.2	0409586
15.95	0982693	18.25	0397671
16.0	0969100	18:3	0385789
16.05	0955550	18:35	0373939
16.1	0942041	18.4	0362122
16.15	0928575	18.45	035033 6
16.2	0915150	18.5	0338583
16.25	0901766	ii l	

TABLE No. 12.—Saponification Values of Waxes

Pure Waxes.	Formula.	Molecular Weight.	Saponification Value.	Iodine Value.
Cetyl Palmitate, Cetin	C16H23. O. CO. C15H31	480	116.9	0
Octodecyl Palmitate	$C_{18}H_{ST}$. O. CO. $C_{15}H_{S1}$	208	110.4	0
Ceryl Palmitate	$C_{26}H_{63}$. O. CO. $C_{15}H_{51}$	620	90.2	0
Myricyl Palmitate, Myricin .	$C_{so}H_{fl}$. 0. CO. $C_{15}H_{fl}$	676	83.0	0
Cetyl Stearate	$C_{16}H_{33}.0.C0.C_{17}H_{35}$	208	110.4	0
Ceryl Cerotate	C ₂₆ H ₅₃ . O. CO. C ₂₆ H ₅₃	762	73.6	0
Cocceryl Coccerate, Coccerin .	$C_{30}H_{60} \cdot (0.C_{31}H_{61}O_2)_2$	1382	81.2	•••
Cholesteryl Palmitate	$C_{26}H_{43}$. O. CO. $C_{15}H_{31}$	610	92.0	41.63
Cholesteryl Oleate	$C_{26}H_{43} \cdot 0.00.C_{17}H_{33}$	636	88.2	18.61
Cholesteryl Stearate	$C_{36}H_{43} \cdot 0.00.C_{17}H_{35}$	638	6.28	39-81
Isocholesteryl Stearate	C ₂₈ H ₄₃ . 0. CO. C ₁₇ H ₃₅	638	6-28	39.81
Cholesteryl Cerotate	$C_{20}H_{43}$. 0. $Co. C_{20}H_{53}$	764	73.4	33.87

Table No. 13.—Acetylated Glycerides. Saponification Values, Percentages

		ACETYLATED N	IONOGLY(ERIDE.			ACETYLAT
	Glyceride of Acid.	Formula.	Molec- ular Weight.	Saponi- fication Value.	In- soluble Fatty Acids.	Acetyl Value.	
1	Acetic	$C_3H_5(O,C_2H_3O)_2 (O,C_3H_3O)$	218	772.0		772.0	C ₃ H ₅ (O.C ₂ H ₃ O) (O.C ₂ H ₄ O) ₂
2	Butyric	$C_3H_5(O,C_2H_3O)_2 (O,C_4H_7O)$	246	684.2		684.2	
3	Valeric	$C_3H_5(O.C_2H_3O)_2$	260	647.3			$C_3H_5(O.C_2H_3O)$ $(O.C_5H_9O)_9$
4	Caproic	$C_3H_5(O, C_2H_3O)_2$	274	614.2			$C_3H_5(O.C_2H_3O)$
5	Caprylic	$C_3H_5(O, C_2H_3O)_2$	302	557.3			$C_3H_5(O,C_2H_3O)$
6	Caprie	$(O, C_3H_{15}O)$ $C_3H_5(O, C_2H_3O)_2$	330	510.0			$C_3H_5(O,C_2H_3O)$
7	Laurie	$C_3H_5(O, C_2H_3O)_2$	358	470.1			(O.C ₁₀ H ₁₆ O) ₂ C ₃ H ₅ (O.C ₂ H ₆ O)
8	Myristic	$C_3H_5(O, C_2H_3O)_2$	386	436.0	59.06	290.7	$(O.C_{12}H_{23}O)_2 \ C_3H_5(O.C_2H_3O) \ (O.C_{14}H_{27}O)_2$
9	Palmitic	$C_3H_5(O, C_2H_3O)_2$	414	406.6	61.83	271.0	$C_3H_5(O.C_2H_3O)$
10	Stearic	C ₃ H ₅ (O,C ₂ H ₃ O) ₂	442	380.8	64.26	253.9	
11	Oleic	$(O, C_{18}H_{35}O) \ C_3H_5(O, C_2H_3O)_2 \ (O, C_{18}H_{22}O)$	440	382.4	64.07	255.0	$(O.C_{18}H_{35}O)_2$ $C_3H_5(O.C_2H_3O)$ $(O.C_{18}H_{33}O)_3$
12	Linolic	$C_3H_5(O, C_2H_3O)_2 (O, C_{18}H_{31}O)$	438	384.3	63.93	256.2	
13	Linolenic	$C_3H_5(O,C_2H_3O)_2 (O,C_{18}H_{29}O)$	436	386.0	63.76	257:3	
14	Ricinoleic	$C_3H_5(O,C_2H_3O)_2 \\ [O,C_{18}H_{32}O(O,C_2H_3O)]$	498	450.0	59.84	338.0	
15	Erucic	$C_3H_5(O,C_2H_3O)_3$ (O,C_2H_4O)	496	339.3	68.14	226.2	$C_{3}H_{5}(O.C_{2}H_{3}O)$ $(O.C_{22}H_{41}O)_{2}$
16	Cerotic	$C_3H_5(O, C_2H_3O)_2 (O, C_{26}H_{51}O)$	554	303.8	71.49	202.5	$C_3H_5(O.C_2H_3O)^2$ $(O.C_{96}H_{51}O)_9$
17	Hydroxystearic .	$C_3H_5(O,C_2H_5O)_2$ $[O,C_1H_3O(O,C_2H_3O)]$	500	448.7	60.0	336.7	
18	Dihydroxystearic	$C_3H_5(O,C_2H_3O)_2$ $[O,C_{18}H_{33}O(O,C_2H_3O)_5]$	558	502.8	56.64	402.2	$C_3H_5(O.C_2H_3O)$ $[O.C_1gH_{2g}O(O.C_2H_3O)]$
19	Trihydroxystearic	$C_3H_5(O,C_2H_3O)_2$ $[O,C_1H_3O,C_2H_3O_3)]$	616	546.4	53.89	455.4	$C_3H_5(O.C_2H_3O)$ $[O.C_1H_3O)$ $[O.C_2H_3O]$
20	Sativic	$C_3H_5(O,C_2H_3O)_2$ $[O,C_{18}H_{31}O(O,C_2H_3O)_4]$	674	582.7	51.63	499.3	
21	Linusic	$C_3H_5(O,C_2H_3O)_2$ $[O,C_{16}H_{29}O(O,C_2H_3O)_6]$	790	639.2	48.11	56.82	$C_3H_5(O.C_2H_3O)$ $[O.C_3H_{30}O(O.C_2H_3O)]$
22	C ₁₇ H ₃₄ O ₂	$C_3H_5(O, C_2H_3O)_2$ $[O, C_{17}H_{33}O]$	428	393.3	63.10	26.22	
23	Acid Mol. W. 275	[0.01711330]	433	388.6	63.2	259.1	[O.O ₁₇ H ₃₃ O _{J0}

soluble Fatty Acids, and Acetyl Values of Mono-, Di-, and Tri-glycerides

		ACETYLATED TRIGLYCERIDE.				DE. ACETYLATED TRIGLYCERIDE.				RIDE.	LYCE
	Acetyl Value.	Insoluble Fatty Acids.	Saponi- fication Value.	Molec- ular Weight.	Formula.	Acetyl Value.	Insoluble Fatty Acids.	Saponi- fication Value.	olec- lar ight.		
1	0		•••		•••	772.0		772.0	218		
2	0			·				614.2	274		
3	0				•••			557:3	302 i		
4	0							510.0	130		
5	0							436.0	186		
e	0				•••		•••	380.8	42		
7	0							338.0	.98		
8	0				•••	101.3	82.30	303.8	54		
٤	0					91.99	83.92	276.0	10		
10	0				•••	84.24	85.28	252.7	66		
11	0				•••	84.74	85.18	254.3	62		
12	0					85.28	85.12	255.8	58		
18	O				•••	85.78	85.00	257.4	54		
1 14	159.1	84.49	318.2	1058	${ m C_3H_5[O.C_{18}H_{32}O(O.C_2H_3O)]_3}$	216.3	76.60	360.6	78 :		
15	0				•••	72.5	87:34	217.5	74		
16	0				•••	63.05	88.80	189.1	90		
1 17	158.1	84.56	316.3	1064	${ m C_3H_5[O.C_{18}H_{34}O(O.C_2H_3O)]_3}$	215.3	76.72	358.7	32		
9 18	271.9	76.67	407.8	1238	${\rm C_3H_5[O.C_{18}H_{33}O(O.C_2H_3O)_2]_3}$	312.4	70.37	43.73	98		
6 19	357.6	70.54	476.8	1412	$C_3H_5[O.C_{18}H_{32}O(O.C_2H_3O)_3]_3$	387.4	65.48	498.0	14		
3 20	424.3	65.81	530.5	1586	${ m C_3H_5[O \cdot C_{18}H_{31}O(O \cdot C_2H_3O)_4]_3}$	446.8	61.59	546.1	30		
1 21	522.1	58.94	609.2	1934	$C_3H_5[O.C_{18}H_{29}O(O.C_2H_3O)_6]_3$	535.5	55.81	611.0	32		
22	0				•••	87.95	84.66	263 · 8	18 ;		
28	0				···	86.5	84.80	259.7	18		
0 0 0 9 0 8 1 7	15 15 15 27 35 42 52	 84·49 84·56 76·67 70·54 65·81 58·94	 318·2 316·3 407·8 476·8 530·5 609·2 	1058 1064 1238 1412 1586 1934	C ₃ H ₅ [O.C ₁₈ H ₃₂ O(O.C ₂ H ₃ O)] ₃ C ₃ H ₅ [O.C ₁₈ H ₃₄ O(O.C ₂ H ₃ O)] ₃ C ₃ H ₅ [O.C ₁₈ H ₃₅ O(O.C ₂ H ₃ O) ₂] ₃ C ₃ H ₅ [O.C ₁₈ H ₃₂ O(O.C ₂ H ₃ O) ₃] ₃ C ₃ H ₅ [O.C ₁₈ H ₃₁ O(O.C ₂ H ₃ O) ₄] ₃	84·74 85·28 85·78 216·3 72·5 63·05 215·3 312·4 387·4 446·8 535·5 87·95	85·18 85·12 85·00 76·60 87·34 88·80 76·72 70·37 65·48 61·59 55·81 84·66	254·3 255·8 257·4 360·6 217·5 189·1 358·7 43·73 498·0 546·1 611·0 263·8	62 58 54 54 90 52 14 30 52 18 58		

TABLE No. 14.—Acetyl Values of Alcohols.

	Aceta	te of Alcohol		A cotul	
Alcohol.	Formula.	Molecular Weight.	Saponification Value.	Acetyl Value.	
Cetyl alcohol . Ceryl alcohol . Myricyl alcohol Glycerol Cholesterol .	C ₁₆ H ₃₃ O.C ₂ H ₃ O C ₂₆ H ₅₃ O.C ₂ H ₃ O C ₃₀ H ₆₁ O.C ₂ H ₃ O C ₃ H ₅ (O.C ₂ H ₃ O) ₃ C ₂₆ H ₄₃ O.C ₂ H ₃ O	284 424 480 218 414	197.6 132.3 116.9 772.0 135.5	197.6 132.3 116.9 772.0 135.5	

TABLE No. 15.—Acid Values of Fatty Acids.

Acid.	Formula.	Molecular Weight.	Acid Value
Acetic	$C_2H_4O_2$	60	935.0
Butyric	$C_4H_8O_9$	88	637.5
Caproic	$C_6H_{12}O_2$	116	483.6
Caprylic	$C_8H_{16}O_2$	144	389.6
Capric	$C_{10}H_{20}O_{2}$	172	326.2
Lauric	$C_{12}H_{24}O_{2}$	200	280.5
Myristic	C14H29O2	228	246 1
Palmitic	C16H32O2	256	219.1
Stearic	$C_{18}H_{26}O_{2}$	284	197.5
Oleic	C18H34O2	282	198.9
Linolic	C18H29O2	280	200.4
Linolenic	C18H30O2	278	198.2
Ricinoleic	$C_{18}H_{34}O_{3}$	298	188.3
Arachidic	C20H40O2	312	179.8
Erucic	C22H42O2	338	166.0
Cerotic	$C_{96}H_{59}O_9$	396	141.7
Hydroxystearic .	C ₁₈ H ₃₆ O ₃	300	187 0
Dihydroxystearic	C18H36O4	316	177.6
Trihydroxystearic	C18H36O5	332	169.0
Sativic	C18H36O6	348	161.2
Linusic	C18H36O8	380	147.6

TABLE No. 16

Conversion of Acid Value into Oleic Acid

Acid Value.	Oleic Acid. Per cent.
1 2 3 4 5 6 7 8	0·5027 1·0054 1·5081 2·0108 2·5135 3·0162 3·5189 4·0216 4·5243

TABLE No. 17 Some Unsaponifiable Substances and their Constants

	Formula.	Melting Point.	Iodine Absorption.	Ace	tates.	Increase in Weight on Boiling with Acetic Anhydride.
		U.	won.	Saponi- fication Value.	Melting Point. °C.	Per cent.
Paraffin wax, Ceresine Cetyl alcohol . Octodecyl alcohol . Ceryl alcohol . Myricyl alcohol . Cholesterol . Isocholesterol . Phytosterol . Mixed alcohols from sperm oil Mixed alcohols from neutral wool fat	C ₁₆ H ₃₄ O C ₁₈ H ₃₈ O C ₂₇ H ₅₆ O C ₃₀ H ₆₂ O C ₃₀ H ₄₄ O C ₂₆ H ₄₄ O C ₂₆ H ₄₄ O ?	38-82 50 59 79 85 148.5 137-138 137-138 25.5- 27.5 	3.9-4.0 0 0 0 68.3 68.3 64.6 65.8 36	197.5 180.0 128.1 116.7 135.5 135.5 135.5 161-190	22-23 31 65 70 92 below 100	0 17·2 15·5 10·6 9·6 11·3 11·3
Mixed alcohols from crude wool fat Mixed alcohols from	?	 75-76		150·6 99-103		6.5-7.7
beeswax Mixed alcohols from carnaüba wax	7	85		123		10:21

TABLE No. 18.—Elaïdin Test

Description of Mass.	Yielded by
(1) Solid, hard	Olive oil, Almond oil, Arschis oil, Lard oil, Sperm oil, (Neat's foot oil).
(2) Butter-like	Neat's foot oil, Arctic sperm oil, Mustard seed oil, (Arachis, Sperm, and Rape Oils).
(3) Pasty or buttery, separating from a fluid portion	Rape oil, Sesamé oil, Cotton seed oil, Sunflower oil, Niger seed oil, Cod liver oil, Seal oil, Whale oil, Porpoise oil.
(4) Liquid products	Linseed oil, Hemp seed oil, Walnut oil, Drying oils generally.

TABLE No. 19.—Sulphur Chloride Test

Oils and Fats treated with S₂Cl₂; 5 grms. of fat with 2 c.c. S₂Cl₂, and 2 c.c. CS₂ (Lewkowitsch).

A. Product completely soluble in Carbon Bisulphide

Class of Oil.	Kind of Oil or Fat.	Mass thickens after Minutes.
Liquid waxes . Vegetable fats Animal fats .	Sperm oil, No. 1 Sperm oil, No. 2 Arctic sperm oil, No. 1 Arctic sperm oil, No. 2 Arctic sperm oil, No. 3 Palm oil Palm nut oil Cocoa nut oil Mowrah seed oil Beef tallow Mutton tallow Lard Butter fat	20 45 45 55 30 Does not thicken.

В	Product no	t completelu	soluble in	Carbon	Bisulphide
---	------------	--------------	------------	--------	------------

Class of Oil.	Kind of Oil.	Solidifie	Soluble in	
Class of Oil.	Mind of Oil.	In the Cold.	On the Water-bath.	CS ₂ .
				Per cent.
(Linseed oil	10	2	14.4
Drying oils . {	Hemp seed oil	11		$9 \cdot 2$
(Poppy seed oil	21		10.6
Fish oils	Japan fish oil	9		12.4
Liver oils	Cod liver, fresh	15	1 ·	4.4
Tree ons J	Cod liver, rancid	11/2	l l	6.4
Blubber oils	Seal oil	11		4.4
proper ours . {	Whale oil	13	i	3.0
Semi-drying oils	Cotton seed oil	20	4	24.0
	Sesamé oil	21		18.4
	Colza oil	23		2.8
	Rape oil	12	2	4.2
	Croton oil	18		25.4
	Castor oil	1	at once	3.8
ì	Peach oil	26		4.8
i	Almond oil, sweet	27		4.0
	Almond oil, bitter	28		3.4
i	Arachis oil	30	i I	6.0
	Olive oil	22	4	4.2
Non-drying oils {	Sheep's foot oil	36		6.0
i	Horses' foot oil	20	:::	13.6
	Neat's foot oil	23		9.4
	Lard oil	10		15.0
	Tallow oil	12		29.8
	3.1			

TABLE No. 20.—Oxygen Absorption by Livache's Test

		Gain in Weight of 100 parts						
Kind of Oil.		Of Oi	l after	Of Fatty Acids after				
		Two days.	Seven days.	Eight days.				
Linseed oil . Stillingia oil .	: :	14·3 8·72	12·45 (8 days)	11.0				
Walnut oil .		7.9		6.0				
Poppy seed oil		6 ·8	•••	3.7				
Cotton seed oil		5.9		0.8				
Beechnut oil .		4.3		2.6				
Colza oil.		0.0	2.9	2.6				
Rape oil		0.0	2.9	0.9				
		0.0	2.4	2.0				
Arachis oil . Olive oil	• •	0.0 0.0	1.8	1:3				

TABLE No. 21
Oxygen Absorption by Bishop's Test

(Oils mixed with 2 per cent Manganese Resinate and spread over precipitated silica)¹

Oils.				Specific Gravity.	Absorption of Oxygen in Per Cent. "Degrees of Oxidation."	Mean Values.
Linseed oil, French			.	0.9327	17.70-16.40	17.05
,, ,, La Plata				0.9304	15.45-15.00	15.20
Hemp seed oil .			. !	0.9287	14.55-14.30	14.40
Poppy seed oil, French			.	0.924	14.50-13.90	14.20
Walnut oil, French			.	0.924	13.70	13.70
Cotton seed oil .			.	0.924	8.60	8.60
,, ,, without	stea	rine	. 1	0.923	9.60-9.30	9.45
Sesamé oil, Senegal			.	0.9215	8.95-8.50	8.70
,, ,, Indian .				0.921	7.40	7.40
Arachis oil, African				0.916	6.70	6.70
,, ,, white .			.	0.916	6.50	6.50
Colza oil, French .	•		٠,	0.9142	6.40 (1)	6.40 (3)
Índian	•	•	٠,	0.9137	5.90-5.80 (%)	5.85 (1)
Olive oil	:			0.9155	5:30 (1)	5.30 (1)

¹ Cp. Oxidised Oils, Part II.

TABLE No. 22

Hydroxylated Acids obtained on oxidising unsaturated Fatty Acids

						Solubility of the			
ęio∢	Downsto	Melting			Acids in			Barium	Barium Salts in
Actu.	FOITIME.	Ç.	Wai	Water.	Alcohol.	hol.	T+hor	Water.	er.
			Cold.	Hot.	Cold.	Hot.		Cold.	Hot.
Dihydroxystesric . C ₁₈ H ₂₄ O ₂ (OH) ₂	C ₁₈ H ₃₄ O ₂ (OH) ₂	137	Insoluble	Insoluble	Sparingly	Soluble	Sparingly	Insoluble	Insoluble
Sativic	C ₁₈ H ₂₂ O ₂ (OH) ₄	173	Insoluble	Sparingly	Sparingly	Soluble	Insoluble	Insoluble	Insoluble
Linusic	$C_{18}H_{30}O_2(OH)_8$	203-205	Sparingly	y Soluble S	Sparingly	Sparingly	Insoluble	Sparingly	Readily
Isolinusic	$C_{18}H_{30}O_2(OH)_6$	173–175	Sparingly soluble	Readily soluble	Soluble	Soluble	Insoluble	Sparingly soluble	Readily soluble
						_			

Table No. 23—Bromoderivatives of Unsaturated Fatty Acids

	Glacial Acetic Acid.	Readily soluble	Easily soluble			Very spar- ingly	soluble Almost	insoluble	
	Benzene. Ac	Readily Ra	Easily Es			Soluble Ve	~	insoluble	
		<u>~</u>	dy Eas		-				
Solubility in	Petroleum Ether.	Readily soluble	Sparingly soluble			Almost insoluble	:	Soluble	
Solub	Chloroform.	Readily soluble	Easily soluble			:	74	oldulosui	
	Ether.	Readily soluble	Easily soluble			Very spar- ingly	7	insoluble Easily soluble	
	Alcohol.	Readily soluble	Easily soluble		Easily	soluble Very spar- ingly	soluble Almost	soluble Soluble	
Contain- ing Bromine.	Per cent.	36.18	53.33	53.33	53.33	63.32	26.02	34·91 34·91	34.91
Melting Point.	ů.	Oil	113-114	125	27-28	177 180-181	:	108 Oil	Oil
Molecular	4 algue.	442	009	009	009	758	902	458 458	458
Formula.		C ₁₈ H ₃₄ O ₂ Br ₂	C ₁₈ H ₃₂ O ₂ Br ₄	C ₁₈ H ₃₂ O ₂ Br ₄	C ₁₈ H ₃₂ O ₂ Br ₄	C ₁₈ H ₃₀ O ₂ Br ₆	C17H26O2B18	C ₁₈ H ₃₄ O ₃ Br ₂ C ₁₈ H ₃₄ O ₃ Br ₂	C ₁₈ H ₃₄ O ₃ Br ₂
Name of Acid.		Dibromostearic Oleic dibromide Dibromodolidic	Elardic dibromide Tetrabromostearic Linolic tetrabro-	Tariric tetrabro-	Telfairic tetrabro-	Hexabromostearic Linolenic hexa-		mide Dibromoricinoleic Ricinoleic dibro-	mide Dibromoricinelardic C ₁₈ H ₂₄ O ₈ Br ₂ Ricinelardic di- bromide
Bromoderivative		Oleic acid .	• •	Tariric acid .	Telfairic acid .	Linolenic acid .	Therapic acid .	Hydroxy acid in Quince oil . Ricinoleic	Ricinelaïdic .

PART II

FATS, OILS, AND WAXES, AND THE COMMERCIAL PRODUCTS DERIVED THEREFROM

A. FATS, OILS, WAXES, AND THEIR CONSTANTS AND VARIABLES

THE Tables No. 24 contain a list of all known fats, oils, and waxes arranged within the classifications given in Part I. A, according to the magnitude of their iodine values. It may, however, be pointed out that it has not been considered advisable to slavishly follow this principle, and such oils and fats as are undoubtedly related to one another have, therefore, been placed together regardless of the iodine numbers.

The figures given comprise the constants of fats and oils on the one hand, and of the mixed fatty acids on the other. Between the two are placed numbers obtained for the variables.

In the case of waxes there have further been added constants for the alcohols (+ unsaponifiable) contained in the waxes.

In many instances the limits between which the experimental numbers lie have been given; in others I had to decide on the mean figures or on the most probable ones.

TABLE No. 24 A.—

Name of Oil.	Source.							T	·
		Native Country.			fic Gravity.	Solidifying Point.	Melting Point.	In- soluble Fatty Acids + Un- saponi- fiable (Hehner Value).	Reichert (R.) or Reichert- Meissl (R.M.) Value.
		-	Per cent.	°C.		°C.	°C.	Per cent.	c.c. 15 norm. KOH.
	num usita- issimum	The East	38-40	15	0.9315- 0.9345	- 27	- 20	95.5	
Tung oil, Ale Chinese de (Japanese) (H		China and Japan	40-41	15	0.9360- 0.9432	below – 17		96.2	
Lallemantia . Lal	llemantia berica	Caucasus, Russia	29-30	20	0.9336	- 35		93.3	1.55 (R.)
	eurites noluccana	South Sea Islands	62-64	15.5	0.9256		liquidate – 18	95.5	•••
Stillingia Stil	illingia seb- fera	China	19	15	0.9432			94.4	0.93 (R. M.)
	nus cembra	Alps, Siberia	·	15	0.930			92.6	
	esperis natronalis	Southern Europe	28-30	15	0.9335	- 22 to - 23			
Hemp seed . Car	nnabis	Asia	30-35	15	0·9255- 0·9280	- 27			•••
	ativa glans regia	Persia,	63-65	15.0	0.9250-	- 27 · 5		95.4	
	rthamus	Himalaya Egypt,	30-32	15.5	0.9260		:	95:37	1.54
Poppy seed Pa	inctorius paver	India Asia Minor	41-50	15.0	0.9280	- 18		95.2	(R. M.) 0.0
Henbane Hy	omniferum voscyamus	Europe	35-37	15	0.9270 0.939			94.7	0.99 (R.)
Amoora Am	niger noora	India		15.5	0.9386			93.23	1:64
Niger seed . Gu	ohituka iizotia ole-	Abyssinia,	40-45	15.5	0.9248-	- 9		94.1	(R. M.) 0·11-0·63
Sunflower . He	fera elianthus	India Mexico,	21-22	15.0	0.9270 0.9240-	- 18.5		95.0	(R. M.)
	nnuus losia cristata	Peru East India,			0.9258	– 10° C.			
	gemone nexicana	China East and West		15.5	0·9247- 0·9259			95.07	
	nus syl-	Indies Europe	32	15	0.9312	- 27 to - 30			
	restris nus Picea	Europe	32-33	15	0·9215- 0·9250	18 to - 20			
	adia sativa	Chili	32-33	15	0.9285	- 12 to - 15			
Tobacco seed . Nie	urus indica icotiana	America	38-40	15 15	0.926 0.9232	below - 15 - 25	•••	•••	•••
	abacum eseda luteola	Europe French	30-32 60	15 23	0.9058 0.973	- 20 below - 15			
gueko) Mohamba		Congo French Congo	12		0.915	below - 15			

Digitized by Google

Vegetab

STANTS.

Saponi**f** Val

> Mgj K(

19**2**

:

2

1

1

186

1;

1! 1!

15

18

18**7·8**

18

1,

.8 .4

5

¹ The somewhat abnormal values are due

TABLE No. 24 A-con-

	' 	SEMI-DRYING OIL	.8.							Con-
	Name of Oil.	Source.	Native Country.	Yield from Seed or Fruit.	Speci	fic Gravity.	Solidifying Point.	Melting Point.	Insoluble Fatty Acids + Unsaponifiable (Hehner Value).	Reichert (R.) or Reichert- Meissl (R.M.) Value.
				Per cent.	°C.		*C.	°C.	Per cent.	c.c. 16 norm. KOH.
1	Cameline (Ger- man Sesamé)	Camelina sativa	Europe	31-34	15	0.9200- 0.9260	-18			
2	Soja bean	Soja hispida	China and		15	0·9242- 0·9270	-8	•••	95.5	
3 4	Pumpkin seed Maize-Corn .	Cucurbita pepo Zea Mays	Japan The East America	20-25 6-10	15 15·5	0.9237 0.9213- 0.9255	- 15.5 - 10 to - 20		96·2 93-96	 4-5 (R. M.)
5	Kapok	Bombax pen- tandrum, or Eriodendron	E. and W. Indies	30-32	18	0.9199			94.9	
6	Wheat	anfractuosum Triticum vul-		12-5	15	0.9245-				
7	Basswood	gare Tilia ameri-			15	0.9292 0.938	-10			•••
8	Cotton seed .	cana Gossypium her-	Asia, Afr'a,	24-26	15	0.9220-		3-4	95-96	••
9	Sesamé	baceum Sesamum orien- tale, and Sesa- mum indicum	Levant,	50-57	15	0.9250 0.9230- 0.9237	- 5		95.7	1·2 (R. M.)
10	Luffa seed	Luffa ægyptica			15.5	0.9254			94.8	1·43 (R. M.)
11	Beech nut	Fagus sylvatica	Europe	43-45	15	0·9200- 0·9225	- 17		95.2	
12	Brazil nut	Bertholletia excelsa	S. America	66-67	15	0.9180- 0.9185	0 – 4			
13	Curcas, purg- ing nut	Jatropha Cur-	W. Indies, S. America	55-57	15.5	0.9204	-8	•••	95.3	0·5 (R. M.)
14	Garden cress .	Lepidium sati-	Europe	23-25	15.5	0·9200- 0·9221	- 15		95.6	0·44 (R. M.)
15	Ravison	Wild Brassica campestris	Southern Russia	33-40	15.5	0·9183- 0·9217	-8	•••		
16	Hedge mustard	Raphanus Ra- phanistrum	Europe	35-40	15	0.9175	-8			
17	Rape (Colza) .	Brassica cam- pestris	Europe	33-43	15.5	0·9132- -0 · 9168	-2 to -10		95.1	0.3
18	Black mustard	Sinapis nigra	Europe	31-33	15	0.916-	- 17		95.1	
19	White mustard	Sinapis alba	Europe	25-26	15.5	0·914- 0·916	-8 to -16:		96.2	
20	Radish seed .	Raphanus sati-	China	45-50	15	0.9175	- 10 to - 17.5		95.9	0:33
21	Jamba	Brassica campestris, var. ?	! 	24	15	0.9154	- 10 to - 12			(R. M.)
22	Croton	Croton Tiglium	East India	53-56	15	0.9500	- 16		89.0	12-13·6
23	Grape seed .	Vitis vinifera	Asia	10-20	15	0.935	- 10 to - 13		92.13	(R. M.) 0·46 (R. M.)
24	Castor	Ricinus com- munis	East Indies	46-53	15.5	0·9600- 0·9679	- 10 to - 18			(R. M.) 1·4
25	Small Fennel	Nigella sativa			15.5	0.9248		·	88.81	5·4¹ (R. M.)

ITAN

Sar fica Va

> Mgri KO**E**

18**8**

'192**'2** 188**'4**3 188-1**9**4

181 5

187-194₆ 178·1₇

193-195 8

189-19**8** 9

187.8 10 191-196, 11

193·4 12 193·2 13

193 · 2 | 13 .78-183 | 14 .74-179 | 15

174 16

.70-179 | 17 174 | 18 170-174 | 19

.73-178 20 172·3 21

10-215 | 1 | 22 178.5 | 23

83-186 | 24 196·4 | 25

o the high

(u)

PART

TABLE No. 24 A-con

		Non-Drying Oil	8.							Co
	Name of Oil.	Source.	Native Country.			ific Gravity.	Solidifying Point.	Melting Point.	In- soluble Fatty Acids + Un- saponi- fiable (Hehner Value).	(R.) or Reichert Meissl (R.M.)
	 			Per cent.	°C.		°C.	°C.	Per cent.	c.c. /s norm. KOH.
1	Quince	Cydonia vul- garis	Asia		15	0.9220			95.2	0·5 (R. M.
2 3	Cherry kernel Cherry laurel .	Prunus cerasus Prunus lauro-	Europe Caucasus	35-36 	15 15	0.9234 0.9230	- 19 to - 20 - 19 to - 20			
4	Apricot kernel	Prunus Ar- meniaca	Asia	40-45	15.5	0.9195	- 14		95.4	0.0
5	Plum kernel .	Prunus domes- tica	Europe	25-30	15	0.9160- 0.9195	-5 to -6	•••		
6	Peach kernel .	Prunus persica	Persia	32-35	15	0.918-	below – 20			
7	Wheat meal .	Triticum vul-	West Asia		100	0.9068				2·8 (R. M.
8	Acorn	Quercus agri- folia			15	0.9162	10	•••		•••
9	Almond	Prunus amyg- dalus	Mediter- ranean	45-55	15	0.9175- 0.9195	- 10 to - 20		96.2	
	Sanguinella (Dogwood)	Cornus san- guinea	Europe	17-20	15	0.9210	- 15	•••		!
11	Californian nutmeg Arachis	Tumion cali- fornicum Arachis hypo-	California W. Africa,	 43- 4 5	15 15	0.9072	-3 to 0	0	95.8	
	Rice	gaea Oryza sativa	India East India	8-15		0.9209	- 3 10 0			! }
-	Tea seed	Camellia thei-	China	30-35	15	0.917-	-5			
	(Chinese) Tea seed	fera Camellia olei-	China	43-45	15	0·927 0·9200	- 12		91.5	
16	(Assam) Pistachio	fera Pistacia vera,	Southern		15	0.9185	-8 to -10			! . •••
17	Hazel nut	P. lentiscus Corylus avel-	Europe Europe	50-60	15	0.9146-	- 17	•••	95.6	i 0∙99 ∣ (R. M .
-	Koëme Birch seed	lana Telfairia pedata Betula alba		33	15	0.9170 0.9180	+7	•••		· ··· .
	Louc-Mouc seed	Detuia aiba	•••							
	Olive	Olea europæa	Southern Europe	40-60	15	0.918	-6 to + 2	•••	95	0.3
22	Olive kernel .	Olea europæa	Southern Europe	12-15	15	0·9184- 0·9191		•••	!	
	Coffee berry .	Coffea arabica	E. Africa		15	0.9510- 0.9525	6-3	•••		1·7 (R. 1
	Ungnadia	Ungnadia spe- ciosa	Texas	46-50	15	0.9120	12	•••	94.12	""
	Ben	Moringa olei- fera	Egypt, India	35-36	15	0.9120- 0.9198	0		۰۰۰]
	Strophantus seed	Strophantus hispidus			13	0.9254		•••	95.3	(R.
	Tropæolum .	Tropæolum majus	S. America	46-50	•…			•••		
	Paradise nut .	Lecythis zabu- caja	Brazil, Guyana	40-42	15	0.8950	4	•••		
29	Secale	Secale cornu- tum			13	0.9254		•••	96.3	

nued

ETMAT

Sapoi ficati Valu

18**1**

193. 1**\$** 1**9**'

1**£** .6**6**

ľ

19

1: 1: 1:

1

11 74

81

1 71 11 (Land State)

TABLE No. 24 B-

	MAI	RINE ANIMAL OILS							Con
	Name of Oil.	Source.	Native Country.				Melting Point.	In- soluble Fatty Acids + Un- saponi- fiable (Hehner Value).	(R.) or Reichert Meissl (R.M.)
				°C.		°C.	°C.	Per cent.	c.c. 16 norm. KOH.
1	Menhaden	Alosa menhaden	West Coast of North	15.5	0·927- 0·933	-4			1.2
2	Sardine	Clupea sardinus	America Mediter- ranean	15	0.8330		•••	94.5	•••
3	Japanese sardine (Japan fish)	Clupea sardinus (?)	Japan	15	0.9160		20 – 22	96-97	•
4	Herring	Clupea harengus	Northern Europe	15.5	0·9202- 0·939			95.64	
5	Stickleback	Gasterosterus tra- churus	Europe					95.78	
6	Sturgeon	Accipenser sturio	Black Sea, Caspian Sea	15	0.9236				
7	Sprat	Clupea sprattus	North Sea, Baltic	15.5	0.9284				
8	Cod liver	Gadus morrhua	Northern Atlantic	15	0·9210- 0·9270	0 to - 10		95.3	
9	Haddock liver .	Merluccius ægle- finus	North, Sea	15	0.9298			93.3	
0	Skate liver Tunny fish	 Thynnus vulgaris	 Mediter-	15 	0·9307 			94·7 95·79	
2	Shark liver (Arc-	Scymnus borealis	ranean Northern Atlantic	15	0.9163	•••		86.9	i '
3	Coal fish liver .	Gadus merlangus (vireus)	North Sea, Baltic	15	0.925				
4	Hake liver	Merluccius com- munis	North Sea	15.2	0.9270				ı
5	Ray liver	Raja clavata (batis)	Coasts of Europe	15.5	0.9280				
6	Ling liver Seal	Molva vulgaris Phoca vitulina	North Sea Greenland, White Sea		0.9200 0.9155- 0.9263	-2 to -3		95·45	0.07 to
18	Whale	Balæna mysticetus Delphinus globi- ceps [ceps	Arctic Seas Northern Seas	15·5 15	0.9250 0.9180	below – 2 below – 3		93·5 93·07	0.7-2.0 5.6
20	Dolphin jaw oil . Porpoise body oil	Delphinus globi- Delphinus phocæna	 North At-	 15	0.9258	 - 16		66·28	65.92 23.5
22	Porpoise jaw oil	Delphinus phocæna	lantic	15	0.9258				47·77 t
23	Cramp fish Sunfish oil		America America	15 15	0·909 0·901				
	Terri	ESTRIAL ANIMAL OILS							
5	Sheep's foot Horses' foot	Ovis aries Equus caballus		15 15	0.9175 0.913-	0 to 15			···
27	Egg	Gallus domesticus		15	0.927	8 – 10	22.25	95.16	0.40-0
28	Neat's foot	Bos taurus		15	0.914-0.916	0-1:5	~··		(R. M.

Animal O STANTS. Saponificati Value. Mgrms. KOH. 190.6 2 189.8-19 171-1 5 1861 6 171.04 8 188; 9 18**5**10 1612 17713

1

14

,5

Name of Fat. Source. Specific Gravity. Solidifying Point. Soli							FATS.	Animal	
Drying Fats	tble tty ids Un- oni- ble hner Reic (R.) Reic (R.)	In- soluble Fatty Acids + Un- saponi- fiable (Hehner Value).	Point.		ific Gravity.	Spec	Name of Fat Source.		
Tebear Tetrao urogallus 15		Per cent.	°C.	*C.		°C.			
Blackcook Tetrao urogallus 15					0.0054	15		0 0	_
Rabbit (wild) Lepus cuniculus 15 0.9393 17-22 35-38	1 ^								
Non-drying Fats		95.4					Lepus timidus	Hare	3
5 Rabbit (tame) Lepus cuniculus 15 0.9342 22.24 40.42 95. 6 Wild duck Anas boschas 15.20 15.20 15.20	. 0		35-38	17-22	0.9393	15	Lepus cuniculus	Rabbit (wild)	
Wild duck		٠	40.40	00.04	0.0040		_		
Tomostic duck Columba livia Columba livi	-	95.5	40-42			- 1			
8 Starling Sturnus vulgaris 15-18 30-35 9 Pigeon Columba livia	i			22-24			11 11		
Turkey	- 1				•••				8
Fox Canis vulpes	i i	•••			0.9220				
Horse Horse Equus caballus 15 0.9189 43.30 34.54 95.15 0.9221									
Horse marrow		95-96	34-54	43-30	0.9189				
14 Badger	. 1	•••	35-39	24-20		15	,, ,,	Horse marrow	
16 Goose (domestic) Anser cinereus 15 0.9274 18-20 32-34 98 17 Goose (wild) ,, ,, ,, 15 0.9158 18-20 18 Chicken		96			0.9226		Meles taxus	Badger	4
Cook Cook	- 1	93							5
18		1							
Polecat	(R		•••	10-20	0 9190	10	"	Goose (Wild)	17
Human	1				0.9241				
Lard Sus scrofa 15	. 0		***	1	0.0033		Mustela putorius		-
Part Part		93-96					Sus scrofa		
23 Dog Canis familiaris 15 0.9229 21-23 37.5-40 95- 24 Wild cat Felis catus 15 0.9304 26.27 37.38 25 Domestic cat Felis domestica 15 0.9304 24.26 39.40 96. 26 Beef marrow Bos taurus 15 0.9311- 0.9380 37.45 27 Bone , , , 15 0.914- 15.17 21.22 28 Beef tallow , , , 15 0.943- 0.952 35.27 45.40 95. 29 Mutton tallow Ovis aries 15 0.937- 0.952 36.41 44.45 95. 30 Butter Bos taurus 15 0.926- 0.940 37.38 49.52 31 Elk Cervus alces 15 0.9625 37.38 49.52						10	Dus sorona	naid	31
Dog	0-		40-44	22-23	0.9424	15	•	Fat from wild boar	99
24 Wild cat		95-65			0.9229		Canis familiaris		
Beef marrow Bos taurus 15 0.9311- 0.9380 15-17 21-22 Bone , , , 15 0.914- 15-17 21-22 Beef tallow , , , 15 0.943- 35-27 45-40 95- 0.952 36-41 44-45 95- 0.953 36-41 44-45 95- 0.953 36-41 44-45 95- 0.953 36-41 44-45 95- 0.953 36-41 44-45 95- 0.953 36-41 44-45 95- 0.940 37-38 49-52	. 2							Wild cat	
27 Bone , , , , , , , , , , , , , ,		96							
28 Beef tallow , , , , 15	. .		31-49	31-29		19	Dos taurus	Beef marrow	26
28 Beef tallow , , , , , 15 0.943- 0.952 35-27 45-40 95- 29 Mutton tallow Ovis aries 15 0.937- 0.953 36-41 44-45 95- 30 Butter Bos taurus 15 0.926- 0.940 20-23 28-33 86- 31 Elk Cervus alces 15 0.9625 37-38 49-52	. .		21-22	15-17		15	,, ,,	Bone	27
29 Mutton tallow Ovis aries	.6 0	95.6	45-40	35-27		15	"	Beef tallow .	28
30 Butter Bos taurus	·5	95.5	44-45	36-41	0.937-	15	Ovis aries	Mutton tallow	29
31 Elk Cervus alces 15 0.940 37-38 49-52		86.5-	28-33	20-23	0.926-	15	Bos taurus	Butter	30
)1 121k		89.8	40 KB	97 90		15	Commo alore	T311	
D 1 1 G		05.0	E0 E4	20.41	0.0050	15	O		
)5 100000 1 1 C	· .	95.8				-			
1 I I I I I I I I I I I I I I I I I I I									
) Onamois								2.	

TABLE No.

	Wax	Co									
	Kind of Wax.	Source.	Spe	cific Gravity.	Solidifying Point.	Melting Point.	Acid Value.	Ether Value.			
			°C.		°C.	°C.	Mgrms. KOH.				
1 2	LIQUID WAXES Sperm oil Arctic sperm oil (Bottlenose)	Physeter macro- cephalus Hyperoödon ros- tratus	15 15	0·8799- 0·8835 0·8764							
3	Solid Waxes Vegetable Waxes— Carnaüba wax	Corypha cerifera	15	0.880-0.888	80-81	85-86	4-7	75			
4	Animal Waxes— Wool wax (wool grease).	Ovis aries	17	0·9413- 0·9449	30-30-2	31-35					
5	Beeswax	Apis mellifica	15	0.964-0.970	60.5-62.8	61·5- 64·4	16·8- 21·2	72-76			
6	Spermaceti (Cetin) .	Physeter macro- cephalus	15	0.905-0.960	42-47	42-49					
7	Insect wax (Chinese wax)		15	0.926-0.970	80.5-81	80.5-83					

34

T.A

Se

-

:

Digitized by Google

B. COMMERCIAL PRODUCTS OF THE FATS AND OILS INDUSTRIES

1. LUBRICANTS

TABLE No. 25 A

Viscosities of some Oils and Fats

Kind of Oil.	Number of Second in Redwood's Vis cosimeter, 50 c.c. water at 70° F. = 25°4 Seconds.	·	Number of Seconds in Redwood's Vis- cosineter, 50 c.c. of water at 70° F. = 25'4 Seconds.
Linseed Tung oil Walnut Safflower Poppy seed Amoora Niger seed Argemone	212 . 858-1433 (water 28 sec.) 232 . 249·1-294 . 254-259 . 376 . 263-293 . 269-272	Garden cress Radish seed . Arachis . Olive . Mahua . Phulwara . Malabar Tallow . Kokum butter . Cocoanut oil .	322 385 307-429 312 90-107 110-4 101-104 101 64

Table No. 25 B

	Rape	_			Americ	an Miner	ral Oil.	Russ	si an M iner	al Oil.
°F.	Oil. Refined.	Sperm Oil.	Neat's foot Oil.	Beef Tallow.	Sp. gr. 0*885.	Sp. gr. 0.913.	Sp. gr. 0.923.	Sp. gr. 0.909.	Sp. gr. 0.915.	Sp. gr. 0.884.
50	712.5				145.0	425.0	1030.0	2040.0	2520.0	
60	540.0	177:0	470.0		105.0	295.5	680.0	1235.0	1980.0	
70	405.0	136.8	366.0		90.0	225.0	485.0	820.0	1320.0	
80	326.0	113.0	280.0		73.0	171.0	375.0	580.0	900.0	
90	260.0	96.0	219.25		63.5	136.0	262.0	426.0	640.0	
100	213.5	80.5	174.75		54.0	111.0	200.0	315.0	440.0	1015.0
110	169.0	70.5	147.4		50.0	89.5	153.0	226.0	335.0	739.5
120	147.0	60.5	126.0		47.0	78.0	126.0	174.0	245.0	531.0
130	123.5	57.0	112.0		44.75	63.5	101.0	135.5	185.0	398.5
140	105.5	50.75	88.4		41.0	58.0	82.0	116.0	145.0	317.5
150	95.5	49.0	75.5	l	37.5	52.0	70.5	95.0	115.0	250.0
160	85.0	47.5	70.0			46.0	63.5	83.5	93.5	200.0
170	76.0	46.0	62.0				58.0	70.5	77.5	161.0
180	69.0	44.5	56.5				52.5	61.5	67.5	134.5
190	64.5	43.0	53.0				47.0	56.5	61.0	115.5
200	58.5	42.0	50.4	54.75			42.0	48.5	54.0	99.2
210	54.0	40.75	48.5				40.0			85.0
220	50.0	39.0	47.0				. 38.0			77.0
230	47.25	36.75	45.8							70.5
240	45.5	35.75	44.6							64.5
250	43.25	34.75	44.0	40						59.2
260		33.75	43.5							54.0
270		32.75	43.0							48.5
280		31.85	41.5							46.5
290		30.75	41.0							44.2
300		30.0	38.0							42.4
310			35.0			;	1			
320			33.8		1	1	1	1	1	

TABLE No. 25 C

Kind of Oil.	Specific gravity at	Number o	f Seconds req	uired at
Killi of Oil.	15.2° C.	15·5° C.	50° C.	100° C.
Sperm oil	0.881	80	47	38
Seal oil (pale)	0.924	131 (?)	56 (?)	43 (?)
Northern whale oil .	0.931	186	65	46 `´
Menhaden oil	0.932	172	40	
Sesamé oil	0.921	168	65	50
Arachis oil	0.922	180	64	
Cotton seed oil (refined)	0.925	180	62	40
Niger seed oil	0.927	176	59	43
Olive oil	0.916	187	62	43
Rape oil	0.915	261	80	45
Castor oil	0.965	2420	330	60

Table No. 25 D

	Specific Gravity at 60° F.	(Redwo	Viscosity od's Viscosi	imeter)	Flash Point. Close Test.	Cold Test.		
		70° F.	120° F.	180° F.	°F.	°F.		
Refined Mineral Oils—			rd for Visc Oil at 70° C		-			
Scotch	0.890-0.895 0.885-0.890 0.875-0.880	100-180 75-100 50-60	40-50 85-40 25-30		320-850 300-825 300-825	82 82 32		
American	0.915-0.920 0.905-0.910 0.885-0.890 0.875-0.880	400-425 200-225 75-100 65-75	90-100 55-65 85-40 80-85	35-40	375-425 350-400 325-350 325-350	32 82 32 32		
Russian	0.910-0.915 0.905-0.912 0.895-0.900 0.895-0.900	1200-1500 700-800 220-250 125-175	200-250 125-150 60-65	50-70 45-50	400-425 350-375 325-350 800-325	25 25 15 10		
Natural (dark) Mineral Oils-		Standa	rd for Visco at 180° C.		000 020			
American summer, dark . ,, medium ,, winter Russian residuum	0.890-0.895 0.880-0.885 0.880-0.885 0.910-0.915	550-700 850-400 750-1000	250-300 110-125 90-100 150-200	70-75 40-50 85-40 45-60	400-425 350-400 325-375 250-300	40-50 25-30 25-30 25-30		
Natural and Filtered Mineral								
American heavy dark . ,, extra dark . ,, medium dark . ,, heavy filtered . ,, medium filtered	0°900-0°905 0°900-0°905 0°895-0°900 0°890-0-895 0°890-0°895 0°885-0°890 0°885-0°890	:: :: :: ::	1750-2000 2000-2500 1200-1400 1400-1500 1000-1200 885-1000 1200-1400 900-1000	850-400 400-450 300-850 300-850 250-800 200-250 300-850 225-275	500-550 525-575 500-525 500-550 500-525 450-500 500-550 450-500	40-45 35-40 40-45 60-70 65-70 75-80 40-45 45-50		
							No. of Samples	Flash Points. °F.
Southern sperm oil Arctic sperm oil White whale oil Neat's foot oil Lard oil Olive oil Rape oil, East India, refined , Black Sea, refined Cotton seed oil, refined . Castor oil	0:8807 0:8804 0:9207 0:9178 0:9172 0:9167 0:916 0:9209 0:9235 0:968	100·1 105·3 187·7 247 223·2 213·2 250·4 226·9 190·4 2500	45·4 47·2 71·3 82·4 79·4 75·0 88·1 78·8 69·8		457·5* 446·2* 476·0* 470·8* 493·9* 437·5* 478·6* 465·4* 523 * 487 *	41·7 39·2 27·2 84·4 39·6 27 26·4 27 30	34 59 35 17 18 24 89 25 22	420-485 390-485 480-530 410-540 425-545 410-465 410-510 480-490 500-540

^{*} Mean Values.

TABLE No. 25 E

	Specific	Vis	scosity (Engle	r's Viscosimet	er).
Kind of Oil or Fat.	Gravity at 17.5° C.	20° C.	50° C.	100° C.	150° C.
Rape oil, crude	. 0.920	9.03	4.0	1.78	1:34
Rape oil, refined	. 0.911	11.88	4.9	2.05	1.40
Olive oil .	. 0.914	10.3	3.78	1.80	
Castor oil .	. 0.963		16.46	3.01	
Linseed oil .	. 0.930	6.36	3.2	1.•76	
Tallow	. 0.951		5.19	2.50	1.73
Neat's foot oil	. 0.916	11.63	4.44	1.92	

TABLE No. 25 F

		Specific Gravity at	Flash Point.		osity scosimeter).
Oils.		17·5° C.	*C.	At 50° C.	At 100° C.
Russian cylinder oils		0.911-0.923	183-238	10.2-16.2	2.0-2.8
,, machine oils		0.893-0.920	138-197	5.8-6.3	1.2-1.8
,, spindle oils		0.893-0.895	163-167	3.1-3.4	1.4-1.5
American cylinder oils		0.886-0.899	280-283	•••	4.1-4.8
,, machine oils		0.884-0.920	187-260	4.2	1.6
,, spindle oils		0.908-0.911	187-200	3.1-3.3	1.4-1.6
Rape oil, crude .		0.920	265	4.0	1.7
,, ,, refined .		0.911	305	4.9	2.0
Olive oil		0.914	305	3.7	1.8
Castor oil		0.963	275	16.4	3.0
Linseed oil		0.930	285	3.2	1.7
Tallow	•	0.951	265	5.2	2.5

2. WOOL OILS—CLOTH OILS

4 By difference.

3 Consisting of 7.02 per cent of fatty acids and 4.26 per cent or combined alcohols.

² Mean molecular weight 286.

1 Calculated as oleic acid.

Table No. 26—Analyses of Ordinary Wool Oils

Per cent. Per cent. 26.8 11.6 34.6 11.28 34.6 11.28 38.92 19.5 11.28 38.92 19.95 11.6 18.95 11.9			,							Flash			Unsaponi-	Neutr	Neutral Fat.
°F. Per cent. Per cent. Per cent. 0-9884 77.21 26.8 0-9083 55.81 35.9 11.6 38.8 0-9081 56.92 34.66 34.2 0-8980 56.26 29.46 32.2 0-9060 58.65 16.32 0-9001 64.42 9.95 0-9001 64.42 9.95 415 0-941 41.7 0-9091 64.42 9.95 415 0-941 41.7 0-9091 64.42 9.95 0-941 41.7 0-941 41.7 0-941 41.7 0.77 86.28 12.95		ž	ource or R	sme.		•				Point.		Acids.	flable.	Direct.	By Difference.
0.8894 77.21 26.8 0.9083 55.91 26.8 11.6 11.28 38.9 0.9081 55.02 34.66 34.5 0.8980 56.26 29.46 0.9000 59.83 59.9 0.9000 59.83 59.9 0.9001 59.83 89.92 41.7 0.901 41.7 41.7 41.7 41.7 41.7 41.7 41.8 12.95 35.4 0.64 73.78 25.58 35.4 0.64 73.78 25.58 35.4 0.77 62.04 37.19 41.8 1.07 69.16 29.77 41.8 1.07 69.16 29.8 29.65 41.8 1.07 69.16 29.8 29.65 41.8 29.8 29.8 29.8 29.8 29.8 29.8 29.8 29										<u>e</u>		Per cent.	Per cent.	Per cent.	Per cent.
0.9083 55.3 35.9 11.6 38 0.9031 55.9 34.6 11.28 342 32 0.9050 56.26 29.46 322 0.9050 58.65 16.32 0.9001 64.42 9.95 416 0.941 41.7 Flash Moisture, Saponi- Unsaponi- flable, 4 flable, 9.77 86.28 12.95 354 0.77 86.28 12.95 367 1.27 68.05 18.69 368 1.11 60.39 38.50 388 0.69 46.96 52.35 374 0.77 378 25.58 389 0.77 62.04 37.19 389 0.69 46.96 52.35 374 0.77 127 62.04 37.19 381 0.67 32.08 67.30	Distilled oleine from	recovered grease		•			•			:	0.8894	77.21	8-92	:	4.0
383 0.9031 55.02 34.5 11.288 382 0.99031 55.02 34.66 382 0.99080 58.65 16.32 0.9000 59.83 38.92 416 0.941 1. 0.9001 64.42 9.95 1. 0.9001 64.42 9.95 1. 0.9001 fd.42 9.95 1. 0.9001 fd.42 9.95 38.60 0.77 86.28 18.69 386 0.77 86.28 18.69 387 1.27 69.08 29.65 389 0.69 46.96 52.35 388 0.69 46.96 52.35 381 0.67 32.03 67.30				٠			•	•	•	:	0.9083	55.31	35.9	11.6	8.8
838 0.9031 55.02 34.66 342 0.8980 56.26 29.46 322 0.9000 58.65 16.32 415 0.941 41.7 Flash Moisture Saponi- flable. Foint. Per cent. flable. flable. 95 0.77 86.28 12.95 86.7 80.56 18.69 849 0.64 73.78 25.58 8419 1.07 69.16 29.77 842 0.77 62.04 37.19 842 0.77 62.04 37.19 842 0.77 62.04 37.19 889 0.69 46.96 52.35 889 0.69 46.96 52.35 831 0.67 46.96 52.35 <td></td> <td>8</td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td>•</td> <td></td> <td>:</td> <td>;</td> <td>54.92</td> <td>34.5</td> <td>11.283</td> <td>:</td>		8			•		•	•		:	;	54.92	34.5	11.283	:
342 0.8980 56.26 29.46 322 0.9060 58.65 16.32 0.9001 64.42 9.95 415 0.941 41.7 Flash Moisture, flable, flable, or.77 88.28 86. 0.77 86.28 12.95 349 0.77 86.28 12.95 349 0.64 73.78 25.58 340 0.64 73.78 25.58 3419 1.07 69.16 29.77 342 0.77 62.04 37.19 388 0.69 46.96 52.35 381 0.67 32.08 65.36 381 0.67 22.04 37.19 381 0.67 22.08 67.30 381 0.74 21.01 78.25		•	•							338	0.9031	55.02	34.66		6.6
322 0.9050 58.65 16.32 417 0.9000 59.83 88.92 417 0.9001 64.42 9.95 41.7		•	•			•		•	•	349	0.8080	26.98	29.46	:	1.95
416 0.941 41.7 41.7 6.9091 64.42 9.95 41.7 6.9091 64.42 9.95 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.9		"	•		•					399	0.000	20.00	16.39	:	28.86
0'9000 39 85 417 417 10'901 64.42 9'95 417 417 417 417 417 418 417 417 417 417 418 69 62 8 86 8 86 8 86 8 86 8 86 8 86 8 8		•						•	•		0000	900	20.00	:	600
Than Moisture Saponi Unaaponi Foint fable 4 fable 6 fable 6 fable 7 fable 7 fable 7 fable 6 fable 6 fable 6 fable 7 fable 6 fable 7 fable 7 fable 7 fable 7 fable 6 fable 6 fable 6 fable 6 fable 7 fable 7 fable 7 fable 7 fable 7 fable 7 fable 7 fable 7 fable 6 fable 7 fable 6 fable 7 fa		:						•		:	0008.0	28.80	28.82	:	:;
Flash Moisture. Saponi. Hable. Flash Moisture. Saponi. Hable. Habl		•						•		:	0.9091	64.42	6.6	:	75.63
Flash Moisture. Saponi- flable. 396 0.77 86.28 12.95 349 0.64 73.78 25.58 367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 369 1.11 60.39 38.50 381 0.67 32.03 374 0.74 21.01 78.25		: 2					•	•		415	0.941	:	41.7	:	:
°F. Per cent. Per cent. Per cent. 396 0.77 86.28 12.95 349 0.75 80.56 18.69 349 0.64 73.78 25.58 367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 389 1.11 60.39 38.50 381 0.69 46.96 52.35 381 0.67 32.03 67.30 374 0.74 21.01 78.25										Flash Point.	Moisture.		Unsaponi- flable.		
F. Per cent. Per cent. Per cent. 396 0.77 86.28 12.95 354 0.75 86.28 18.69 349 0.64 73.78 25.58 367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 389 0.69 46.96 52.35 331 0.67 32.03 67.30 374 0.74 21.01 78.25															
396 0.77 86.28 12.95 349 0.75 80.56 18.69 367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 369 1.11 60.39 38.50 338 0.69 46.96 52.35 374 0.74 21.01 78.25				-		_				F. 8	Per cent.		Per cent.		
354 0.75 80.56 18.69 349 0.64 73.78 25.58 367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 389 1.11 60.39 38.50 381 0.69 46.96 52.35 374 0.74 21.01 78.25	Brown oleine, compo	ound oil of English	distilled	t and fo	reign oi	=		•		396	0.17	86.58	17.82	:	:
349 0.64 73.78 25.58 367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 389 1.11 60.39 38.50 338 0.69 46.96 52.35 331 0.67 32.03 67.30 374 0.74 21.01 78.25	Brown foreign oleine	e, Belgian			•			•	•	. 354	0.75	80.26	18.69	:	:
367 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 369 1.11 60.39 38.50 338 0.69 46.96 52.35 331 0.67 32.03 67.30 374 0.74 21.01 78.25	Brown "oleine cloth	h oil,"" manufactu	red"	•				•		_	0.64	73.78	25.58	:	÷
867 1.27 69.08 29.65 419 1.07 69.16 29.77 342 0.77 62.04 37.19 869 1.11 60.39 38.50 838 0.69 46.96 52.35 831 0.67 32.03 67.30 874 0.74 21.01 78.25	"Black oil." recover	red after using fore	ign and	Englis	h distil	led of	eine (fl	annel	distric	<u>ب</u>		_			
419 1.07 69.16 29.77 342 0.77 62.04 37.19 369 1.11 60.39 38.50 388 0.69 46.96 52.35 381 0.67 32.03 67.30 374 0.74 21.01 78.25	Lancashire)			· ·				•	•		1.27	80.69	29.62	:	:
342 0.77 62.04 37.19 369 1.11 60.39 38.50 381 0.67 32.03 67.30 37.19 38.50 38.50 37.19 38.50 38.50 37.4 0.74 21.01 78.25	" Brown orease" rec	covered after using	Gallipol	i oil						419	1.07	69.16	29.77	:	:
369 1·11 60·39 38·50 338 0·69 46·96 52·35 331 0·67 32·03 67·30 374 0·74 21·01 78·25	Distilled oleine from	brown grease and	once rec	overed (olive oil						0.77	62.04	37.19	:	:
369 1.11 60.39 38.50 338 0.69 46.96 52.35 331 0.67 32.03 67.30 374 0.74 21.01 78.25	" Black oil" recover	red after using olein	ne and b	etter cla	ass "clc	th oil	3" (hal	Эв,, J	k," ha						
838 0.69 46.96 52.35 831 0.67 82.03 67.30 874 0.74 21.01 78.25	waste)		•	•				•	. •		1:11	60.33	38.20	:	:
831 0.67 82.03 67.30 374 0.74 21.01 78.25	Brown oleine, distill	led from brown gree	3.8e				•	•	•	338	69.0	46.96	52.35	:	:
374 0.74 21.01 78.25	" Black oil " recover	red after using reco	vered an	d low c	loth oil	(fron	waste	•	•	331	29.0	32.03	67.30	:	:
	" Brown milling oil	" (for rags), brown	grease a	nd hydu	rocarbo	18	•			374	0.74	21.01	78.25	:	:
	L L L	0	0	•											

Table No. 27—Analyses of Emulsion Wool Oils

Name of Oil.	Na ₂ O. Per cent.	NH3. Per cent.	Water.	fatty Matter. Per cent.	Fatty Acids. Per cent.	Neutral Fat. Per cent.	Fatty Acids. Neutral Fat. Unsaponifiable. Per cent. Per cent.	Soda Soap Anhydrous. Per cent.	Gummy Substances. R	K2CO3.	K2CO3. Glycerol.
:	0.91	0.32	84.45	16.16							
	: ;	:,	19.91	50.86	: 0	: 1	:;	0.61	0.72		
" Patent oil "	0.41	1.36	:	:	0.02	2.8	6.9 9				
:	:	12.20	34	:	45.0	2.0	:	1.2		_	-
"Soluble Neoline" (calculated)	:	:	26.18	:	.:	:	:	8.4	:	4.55	14.05

Table No. 28—Heat Test of Wool Oils (by Mackey's Cloth Oil Tester)

_	Oil Used.	_:			-	Temp. in 1 hr.	Temp. in 1 hr. 15 m.	Temp. in 1 hr. 15 m. Temp. in 1 hr. 30 m.	Temp. in 2 hrs.	Maximum
					 	°C. = °F.	°C. = °F.	°C. = °F.	°C. = °F.	°C. = °F.
Cotton seed .		•			•	125 = 257	242 = 468	:	:	242 = 468
:		•				121 = 250	242 = 468	282 = 540	:	284 = 543
:::	•	•	•		_	128 = 262	212 = 414	225=437	:	225 = 437
::		•				124 = 255	210 = 410	:	:	248 = 478
::	•	•	•			116 = 241	192 = 378	200 = 392	:	200 = 392
		•				118 = 244	191 = 376	202=396	:	202 = 396
::		•				117 = 243	190 = 374	194 = 381	:	194 = 381
::		•			٠.	112 = 234	177 = 351	204 = 399	:	211 = 412
Olive fatty acids		•	•			114 = 237	177 = 351	:	:	196 = 385
. :		•	•			105 = 221	165 = 329	:	:	293 = 559
	•	•				102 = 216	135=275	208 = 406	:	226 = 439
White Australian oleine	oleine .	•	•			103 = 217	115 = 239	191 = 376	:	230 = 446
Olive		٠	•			98 = 208	102 = 216	104 = 219	:	241 = 466
Oleine		•	•		•	98 = 208	101 = 214	102 = 216	:	110 = 230
97% oleine		٠				98 = 208	100 = 212	102 = 216	:	172 = 342
Belgian oleine		•			-	98 = 208	99 = 210	100 = 212	:	173 = 343
Olive (neutral)		•	•		٠.	98 = 208	100 = 212	101 = 214	:	235 = 455
. :		•	•			97 = 207	100 = 212	101 = 214	:	228 = 442
: :		•	•			97 = 207	:	101 = 214	:	235 = 455
Cotton		•				139 = 282	:	:	:	200 = 392
		•				99 = 210	101 = 214	102 = 216	103 = 217	113 = 235
Mixture of 50% of No. 20 a	No. 20 and	ba,	50% of No.	0, 21		102 = 216	117 = 243	:	:	200 = 392
95	:		:			99 = 210	105 = 221	112 = 234	:	200 = 392
			:			00 - 910	109=216	105-991	197 - 981	900 - 309

3. SOD OILS—DÉGRAS

Analyses of some Oils and the Sod Oils made therefrom TABLE No. 29

Name of Oil.	Specific Gravity.	ravity.	Refractive Index.	e Index.	Fatty Acids Insoluble in Petroleum Ether.	Acids ble in n Ether.	Acid '	Acid Value.	Saponification Value.	lcation ne.	Iodine Value.	Value.
	Original Oil.	Dégras.	Original Oil.	Dégras.	Original . Oil.	Dégras.	Original Oil.	Dégras.	Original Oil.	Dégras.	Original Oil.	Dégras.
Shark liver oil	0.9158	0.9212 1.4735 1.4752	1.4735	1.4752	Per cent. 0-91 1-70	sent. 1.70	0.2	8.4	157.2	143.2	06	82.4
Seal oil	0.9258	0.9465	1.4760	1.4790	2.70	14.41	6.1	26.1	193.8	190.2	96.2	68.4
Mixed fatty acids from seal oil	0.9354	0.9473	:	:	3.0	12.91						
Cod liver oil	0.9274	0.9836	1.4755	1.4780	28.0	19.40	13.6	28.3	187.9	183.4	14.8	100.2
Mixed fatty acids from cod liver oil	0.9375	0.9612	i	:	1.21	18-44						
Whale oil	0.9270	0.9423	1.4755	1.4758	3.44	6.19	10.6	10.6	190.4	181.5	38	11

TABLE No. 30
Analyses of some American Sod Oils

lodine Value to lodine.	Per cent.	31.76	9.38	16.89	22.48	20.80	23.66	3.55	20.09	71.58	13.80	25.19	20.92
.eldafinoqæauU	Per cent.	20.60	0.95	41.46	18.95	14.90	14.99	0.28	5.80	0.37	21.81	29.82	6.35
.eulaV enibol	Per cent.	52.45	60.54	43.26	22.03	46.69	49.03	29.06	44.17	77.53	22.79	47.19	41.01
Reichert-Meissl Value.	Gc. 15 norm. KOH.	1.87	5.66	2.53	2.54	2.41	1.32	1.66	3.72	2.28	2.03	2.33	3.87
Free Fatty Acid.	Per cent.	27.43	72.64	44.69	26.13	73.18	35.99	19.40	17.96	34.00	47.51	39.63	20.32
Mgrms. KOH.	Per 1 grm. of oil.	20.66	206.21	111.52	108.75	140.29	85.70	181.53	135.83	186.53	64.04	101.48	109-94
Те́gr a s-former.	Per cent.	0.93	15.98	2.73	:	6.33	5.62	21.41	17.73	13.91	9.0	2.74	8.41
.fatoT	Per cent.	100.22	100.24	101.92	:	62.66	26.66	100.41	100.56	100.00	100.95	101.50	99.18
na Ash Insoluble in Petroleum Ether Petroleum Ether and Alcohol.	Per cent.	0.12	0.15	91.0	:	0.47	90.0	0.15	0.35	0.13	0.55	91.0	0.15
Hide Fragments.	Per cent.	99.0	1.02	1.09	:	1.26	0.49	5.6	2.54	64.0	0.31	0.15	1.29
Soap, etc., Soluble in Alcohol.	Per cent.	1.90	20.2	1.35	:	7.54	8.81	3.09	2.40	5.44	3.19	2.27	89.0
Oil, etc., Soluble in Petroleum Ether.	Per cent.	72.60	88.61	09.96	:	75.37	59.74	89.28	58.81	69.96	29.99	94.38	73.36
Moisture.	Per cent.	25.27	3.38	2.75	19.48	15.45	30.87	4.59	33.46	1.01	40.61	3.94	23.70
∀ sp·	Per cent.	96.0	0.40	0.215	0.02	1.045	89.0	0.37	0.77	0.22	98.0	0.58	0.46
		•	•	•	•	•	•	•	•	•	•	•	•
oil.			•	•		•		•	•	•	thick	thin	•
Sod oil.		Yellow	Brown	Brown	Yellow				Brown	Brown	Brown,	Brown,	Brown
		- i	લં	ကံ	4	ò	6.	۲.	∞	င်္	20.	Ξ	12.

TABLE No. 31.—Analyses of some Dégras

		1	2	8	4	5	6	7
Water	Per cent	18.90	14.84	12:93	28.90	19:20	5.39	8.90
Ash	,,	0.25	0.13	0.55	0.70	0.07	0.25	1.21
Hide fragments .	,,	0.30	0.30	0.09	0.58	0.27		1.59
Oils	,,	69.71	74 65	80.00	66.93	75.66	84.87	72.15
Unsaponifiable .	,,	6.84	6.05					
Resinous substance	,,	4.00	4.05	5.81	3.52	4.80	9.46	16.15

				Melting		Original	Dégras.
			Dégras- former.	Point of Fatty Acids.	Soap.	Hide Frag- ments.	Water.
French dégras	, anhydrous,	No. 1	Per cent. 19·14	°C. 18·0-28·5	Per cent. 0.73	Per cent. 0.07	Per cent. 16.5
,,	,,	,, 2	18.43	28.5-29:0	0.49	0.12	20.5
,,	,,	,, 3	18·10	31.0-31.5	0.68	0.18	12.0
Sod oil	,,	,, 1	20.57	33.2-34.0	3.95	5.7	35.0
,,	,,	,, 2	18.63	27.5-27.0	3.45	5.9	28.0
,,	,,	,, 3	17.84	28.0-28.5	3.00	4.2	30.5

Table No. 32.—Analyses of Some Degras

15		Constant Ether Value Difference between 13 and 14).	80	28.7	13.4	8.08	75.4	8.89	33.1	.00		2.08	31.4	6.89	42.4
	;		63	_	_				63	<u>≃</u>		G.J	0,5		14
14		Constant Saponi- fication Value.	224.3	131.5	172.9	193.7	185.9	559.6	215.6	197.1		210.2	212.2	213.2	195.6
13		Constant Acid Value.	185.5	102.8	129.6	162.9	163.5	175.8	182.2	2.96		179.5	180.8	159.3	153.2
12	slue.	An- hydrous Dégras Difference between 8 and 10).	:	37.7	20.2	84.7	84.7	43.9	:	6.1.2	89.2	71.1	:	:	8.02
TI	Ether Value.	Original Degras Difference between 7 and 9).	:	32.9	62.2	71.3	8.02	38.0	:	26.2	74.4	67.4	;	:	:
10	ion Value.	An- hydrous (Dégras.	:	110.4	110.7	134.8	137.4	108.8	:	100.8	141.2	125.2	163.8	186.0	121.2
6	Saponification Value.	Original Dégras.	:	96.5	0. 26	113.4	114.9	8.96	:	83.4	117.8	118.6	:	:	:
80	Acid Value.	An- hydrous Dégras.	37.7	72.7	40.5	20.1	52.7	64.9	:	58.6	22.0	54.1	:	:	50.4
7	Acid 7	Original Dégras.	30.5	63.3	35.2	42.1	44.1	57.4	:	23.9	43.4	51.5	:	:	i
9		Acety- lated Fatty Acids.	73.1	52.7	90.4	9.99	76.2	1.91	6.88	102.7	:	73.0	127.4	101.9	7.77
ro	Value.	Insoluble Fatty Acids.	70.5	58.6	75.4	70.5	78.5	2.92	95.9	93.4	:	79.3	142.3	106.0	9-22
4 .	Iodine Value.	An- hydrous Dégras.	74.7	64.2	77.4	78.4	8.22	9.92	2.96	83.7	6.08	74.4	127.7	126.7	78.5
က		Original Dégras.	60.4	55.9	8.49	62.9	65.0	8.19	83.3	69.5	67.2	20.2	127.7	:	:
83		Water.	Per cent.	12.9	12.4	15.9	16.4	11.5	13.9	17.3	16.6	5.3	:	:	
1		No. of Sample.	-	63	အ	4	10	9	7	∞	6	10	11	12	Mean of 1-10

Table No. 33.—Analyses of Degras and Similar Products

			Insoluble in	 : !	Theamoni.	Oxidised	7	Anhydrous Fat	
	Water.	Ash.	Petroleum Ether.	Fatty Matter.	flable Matter.	Acids (Dégras- former.)	Acid Value.	Saponifica- tion Value.	Iodine Value.
	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.			
Dégras	. 13.31	0.32	0.31	86.1	3.1	11.03	108.0	185.8	0.69
	10.02	0.18	0.54	89.2	3.4	14.13	119.0	188.0	27.8
	. 10.24	0.58	0.58	89.3	1.0	1.49	104.0	181.8	2.02
	8.49	90.0	0.31	91.1	16.0	9.25	34.5	208.2	106.0
	. 17.33	0.27	0.14	82.3	2.21	0.95	29.2	206.0	122.0
	10.59	0.50	0.10	89.1	3.1	10.93	112.0	181.2	63.9
	1.53	0.40	0.04	2.76	1.85	16.17	112.0	170.0	62.2
Moëllon, pure	18.45	20.0	60.0	81.4	2.04	11.65	25.7	215.5	89.1
	. 19.88	0.03	0.46	79.63	0.45	1.46	47.4	214.0	115.0
Moëllon-dégras	. 11.65	0.63	86.0	86.74	3.27	2.01	17.4	196.7	126.0
Oxidised blubber oil	. 10.43	0.20	0.21	98.88	1.44	1.61	17.0	192.3	129.0
Oxidised emulsion fat	7.45	0.41	80.0	92.1	2.72	9.74	17.0	196.3	107.8
(Dégras	13.88	0.14	0.55	8.98	40.6	4.06	35.0	8.66	52.9
	14.16	0.28	26.0	84.3	18.9	3.73	32.4	137.4	9.08
rig	. 25.46	20.0	1.25	73.22	14.29	2.38	33.0	206.4	101.8
i10	18.79	0.46	0.31	80.44	23.61	5.33	31.0	135.4	72.3
Dégras-moëllon.	. 15.79	0.02	0.55	83.94	28.1	1.84	40.2	113.2	72.1
Dégras	7.59	0.56	0.38	91.8	33.12	3.33	29.7	0.86	49.9
E "Mutton-degras"	16.49	0.31	0.74	82.2	8.5	5.21	39.4	194.0	104.5
Dégras-moëllon	14.29	0.58	0.38	85.04	14.1	4.96	38.4	180-0	102.0
Of Dégras	20.37	80.0	0.45	79.1	40.3	2.95	24.0	0.98	49.5
· ·	30.29	0.52	0.55	69.24	5.53	6.55	24.6	201.0	0.06
Wat from and oil	_			100.0	12.0	18.84	71.8	934.0	61.0

Table No. 34—Analyses of Degras

7	٠	8 4	60.44	1 ~	mammo=1-m-
Value o	Anhy- drous Sub-		52:3	139.7	83.8 115.6 65.3 65.3 50.4 50.7 59.6
Iodine Value of	Original	stance.	35·7 34·0	139.7	69 64.4 53.8 53.8 64.7 45.4 60.2
ication e of	Anhy- drous Sub-	stance (calcu- lated).	221 ·0 239 ·0	192-3	209.0 160.0 198.0 193.0 163.4 1129.0 1120.9 1152.6
Saponification Value of	Original	stance.	155 · 0 144 · 0	192.3	1720 131:2 164:0 166:0 126:0 105:0 95:0 136:0
Jo enla	Anhy- drous Sub-	stance. (calcu- lated).	51.75	:	20.02 27.46 14.18 19.62 15.35 14.61 24.54 24.28
Acid Value of	Original	stance.	35·75 25·08	68.6	16.64 22.49 11.72 11.55 11.83 11.49 19.29 18.77
d Acids former).	in Anhy-	Sub- stance.	26·38 23·44	3.80	111.77 2.48 8.04 111.92 111.81 5.47 6.87 7.99 6.50
Oxidised Acids (Dégras former).	in Original	stance.	18.03 14.09	8.79	9.66 2.03 6.65 9.44 9.11 4.30 6.18 6.18
Unsa.	fiable Matter.	Per cent,	2.36	1.30	1.16 19.61 2.25 1.88 8.75 15.77 30.56 22.26 17.59
S	Ŝ	Per cent.	0.47	0.0	000000000000000000000000000000000000000
Insol- uble in	leum Ether.	Per cent.	5.07	:	0.15 trace trace trace 0.23 0.30 0.32 0.32
1		Per cent.	1.83	0.03	0.11 0.32 0.38 0.60 0.10 0.08 0.31
ļ	r acer.	Per cent,	31·13 39·60	0.50	17.74 18.13 17.35 20.78 22.89 21.83 21.40 22.70
	Specific Gravity at 18° C.		1.0025	0.9172	0.9435 0.9445 0.9446 0.9463 0.9493 0.9506
			Natural dégras from chamoising . , , , , ,	Fish oil, used in dégras manufacture	Commercial "dégras," German
	No.		7 7	က	4 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4. OXIDISED OILS

a. BLOWN OILS

TABLE No. 35.—

I.	II.	111.	IV.	v.	VI.	VII.	VIII.	IX.
No.	Oil.	Specific Gravity at 15.5° C. (Water 15.5=1).	Free Acid Calculated as Oleic.	Unssponifisble Matter.	Saponification Value.	Reichert-Meissl Value,	Iodine Value.	Specific Temperature Reaction.
			Per cent.	Per cent.				
1 2 3 4	Rape	0·9141 0·9275 0·9615 0·9674	5·10 5·01 7·09 4·88	0.65 0.76 	173:9 183:0 194:9 267:5	 8·8	100·5 88·4 63·2 65·3	135
5 6 7	Sperm	0·8797 0·8989 0·9672	1·97 3·27 4·93	36·32 34·65 2·80	130·4 142·3 197·7		82·1 67·1 63·6	253
8	Commercial blown cotton seed .	0.9740 At 20° C.	3.38	1.00	213.2	•••	56.4	227
9 10	Commercial blown seal Cotton seed Oxidised cotton seed obtained by ex-	Water 20°=1 0°9815 	16·5 1·1	 1.05	221·0 190·4		78·2 108·8	
11 12 13	posure on chamois leather and exhausting with petroleum ether After 8 days After 12 days Oil obtained by subsequent exhaustion with ether of the leather extracted with petroleum ether		6.69 6.94 16.79	1·13 1·33 0·72	223·1 227·5 271·3		55·4 46·3 29·1	

Some Constants and Variables of Blown Oils

XI.	XII.	XIII.		XIV.		xv.	XVI.	= X(V.+	XV.).	
	tile	In-	Mole	cular Weig	ht of					
Soluble Volatil Acids.	Soluble Non-Vola Acids.	Iodine Value of soluble Acids.	Insoluble Acids.	Soluble non- volatile Acids.	Soluble Vola- tile Acids.	Oxidised Acids	Non-v freed fr and	olatile Fatty rom Oxidise I Unsaponifi Matter.	y Acids d Acids able	
Per	cent.					Per cent.	Per cent.	Molecular Weight.	Melting Point °C.	
0.	0·52 20 0·82 66·5 327·0 241 72	66.5				!	1 2			
9·20 	9.20 0.82 66.5 327.0 241 72	72					1 2 3 4			
11·16 1·90	9·00 1·94	70·2 62·7	317·0 296·0		76 104					5 6 7 8
						0.27	92.9	278·1	35:36	9
						20·62 19·13 37·72	63·59 63·16 35·76	276·2 273·2 269·1	45·46 46 51	11 12 13
	9 - 20 11 · 16 1 · 90	9 elibe Volatile Soluble Volatile 1.190 1.30 1.30 Soluble Volatile 1.30 1.30 Soluble Volatile	Per cent. 0.252 9.20 0.82 0.52 9.20 0.82 66.5 11.16 1.90 1.94 62.7	Mole Mole	Molecular Weight Molecular W	Molecular Weight of Molecular Weight of	Molecular Weight of Molecular Weight of Spipor Sp	Molecular Weight of Molecular Weight of	Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight Matter. Molecular Weight Molecul	Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Weight of Molecular Matter. Molecular Matter. Molecular Weight of Molecular Weight of Molecular Matter. Molecular Weight of Molecular We

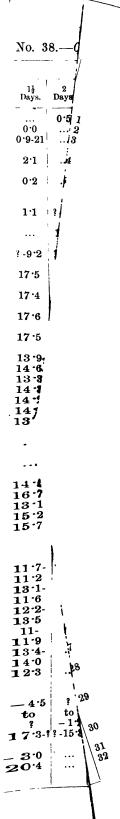
Table No. 36.—Analyses of some Oils and their Blown Oils (Lewkowitsch)

		Овіа	Original Oil.		ACE	ACETYLATED OIL.	OIL.			
	1	ıı.	111.	7.	Α.	VI.	VII.	VIII.	IX.	×
	Specific Gravity, at 15.6° C.	Saponifica- tion Value.	Total Volatile Fatty Acids per Gramme in terms of Milli- grammes KOH.	Oxidized Acids. Per cent.	Saponi- fication Value.	Heh- ner Value.	Apper- ent Acetyl Value.	True Acetyl Value.	VIII. × 56.	Differ- ence VII.
Linseed oil	:	:	8.0	:	206 .6	96.2	12.5	11.7	6.4	
_	0.9334	189.8	1.68	1.5	500.8	94.4	18.9	17.22	9.47	11.1
	0.9403	191.3	3.0	1.7	203.9	94.6	22.2	19.2	10.72	12.6
	0.9446	192.4	တ္	2.03	208.5	93.5	26.5	17.2	9.46	15.8
Linseed oil, blown ten hours at 120° C.	0.9460	192.7	6.0	7.1	211.8	92.1	35.6	31.7	17.4	19.1
Cotton-seed oil	:	:	0.1	:	200.5 200.5	2.96	1.1	9.2	4.18	
Cotton-seed oil, blown two hours at 120° C.	0.9262	194.3	2.88	0.21	203.9	94.8	14.2	11.32	6.23	9.6
Cotton-seed oil, blown four hours at 120° C.	0.9291	194.9	2.44	28.0	212.0	85.8	55.8	20.46	11.25	17.1
Cotton-seed oil, blown six hours at 120° C.	0.9320	196.1	4.60	0.94	215.2	91.9	30.0	52.4	13.97	19.1
Cotton-seed oil, blown ten hours at 120° C.	0.9346	196.8	4.16	1.28	218.4	91.4	36.0	30.84	16.96	51.6
Premier jus	:	:	0.28	:	189.6	:	မာ စံာ	2.72	1.49	
Premier jus, blown four hours at 120° C.	:	202.3	:	0.0	211.6	9.76	18.8			
Oleic scid	:	:	0.95	:	203.7	6.66	9.0	2.02	1.13	დ. ტ
Oleic scid, blown two hours at 120° C.	0.9098	204.9	5.0	0.62	211.1	3.86	14.2	11.3	6.51	9. 7.
Oleic acid, blown four hours at 120° C.	0.9121	206-0	9.8	5.6	217.3	99.4	18.5	14.6	8.03	11.3
Oleic acid, blown six hours at 120° C.	0.9123	208.3	4.3	3.5	223.3	8. 26	53.6	19.6	10.78	15.0
Oleic acid, blown ten hours at 120° C.	0.9238	213.4	5.8	9.	227.2	9. 26	22.3	19.4	10.67	14.1
Blown rape oil, commercial	0.9714	202.6	8.8	24.95	:	÷	62.04		29.55	
Blown cotton seed oil, commercial	0.9722	213.7	16.06	26.42	:	:	92.9	48.24	28.7	
Boiled oil, commercial, I.	:	188.7	1.6	9.2	207.4	91.2	26.6	24.0	13.2	18.7
Boiled oil, commercial, II.	:	186.1	1:1	4.63	199.7	8.78	18.0	16.9	9.58	13.6
Drying oil, prepared with ozone, I.	:	:	3.5	2.15	208.5	91.2	29.7	26.2	14.57	
Drying oil, prepared with ozone, II.	:		4.5	3.82	211.6	91.7	24.3	20.1	11.06	
Oxidised acids from solidified linseed oil .	. { Acid value	100.0		9	918.0		100.0		ā. 1.	192.0
	700	_	:	100	0 010	:	7.001	:	0 7 /	190.0

4. OXIDISED OILS

(b) BOILED OILS AND THEIR RAW MATERIALS

Table
Oxygen Absorption by the
(Approximate


												Increase in
					1½ Days.	Days.	Days.	3 Days.	8½ Days.	Days.	Days.	5 Days.
					Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
1	Linseed oil,	Indian	•		0.3-3.0		1.7-8.8		6.5-12-5.9		12·3- 17·2	•
2	,,	artists'	oil		1.3-1.8				2.7-14.3		5.6-	
3	,,			years corked	2.2-2.7		10.5- 3		19.7-19.9		18·3 De- crease	
4	,,		aree y well-	ears in corked	?-6.2		14·2- 15·3		15 · 1 - 15 · 7		De- crease	
5	Tung oil, A				0.4			0.8-3.6	•••			9 · 1 - 10 · 9
6	"В				0.9-5.6		? -12:4	? -15:9	3.1- 3			10.5-15.0
7	.,, C				·		11·1-					12-9-14-8
8	,, D				,		10.6 10.6	•••				14.8
9	Hemp seed	oil .			? -2·4		3 -8.0		? -12.8	13:6- ?	? -13 •4	•••
10	Poppy seed	oil.			1.3		3.2		5·1		8.3	•••
11	Rape oil .				4.9		5.3					
12	,, blov	wn .			3·1		4.2					•••
13	Peach kerne	l oil			·	2.5		2.5				4.3
14	Olive oil .					0.8				1.7		•••
15	Palm kernel	oil	•		·	0.2						0.6

No. 37

Glass-Plate Method (Weger)
numbers only)

	1		1			1					1	
6 Days.	Days.	Days.	Days.	Days.	13 Days.	Days.	Days.	Days.	26 Days.	29 Days.	42 Days.	Days.
Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
.6·8- 17·3		De- crease			-							
5·4- 16·7	•••		Decrease									
20.	.•											
2·2- ?			Decrease								•	
2·9- 14·6		13·6 14·1- ?	Decrease									
e- erease			į									
e- rease										Ì		
e- rease											1	1
11.6	13.4		Decrease							l	1	,
	7.6											
	4.9				6.6	7.7					8.0	
4.6	•	6.2		6.8	7.1	7.1		7.4	8.6	10.5		
1.7				3.1	3.6		4.2	5.2				
			0.6	·	0.8		1.8					1.2

	<u> </u>							
		8 Hours.	5 Hours.	8½ Hours.	9 Hours.	12 Hours.	16 Hours.	1 Day.
1	Linseed oil, Indian, heated a short time to 150° C.	-						
2	,, ,, ,, blown in the cold 25 hours .		•••		•••			• • • • • • • • • • • • • • • • • • • •
3	,, ,, ,, blown in the cold 25 hours, then	•••		·	• • •	·	• • • •	•••
4	25 hours at 150° C. ,, ,, Artists', freed from mucilage, by rapid	· · · ·	•	·				
5	heating to 280° C. ,, ,, ,, freed from mucilage, by rapid							
-	heating to 280°C., then heated to 360°C for a short time				,			
6	,, ,, heated to 250° C. by superheated steam			•••	•••	•••	•••	
7	,, ,, fatty acids, filtered off from solid acids.			;			• •••	14.4
8	Boiled oil			··· !		•••	•••	9 • 0 - 4 • §
9	,, ,, prepared in the cold with 2 per cent. lead mangano resinate from linseed oil		14.1	17.5				l
10	,, ,, from same oil, freed from mucilage and treated with 2 per cent. as above		15.3	17.4				
11	,, ,, from same oil, blown in the cold and treated with 2 per cent. as above		12.8	16.7				17.1
12	,, ,, from same oil, blown at 150° C. and treated as above	-:-	14.5	16.2			:	16.5
13	,, ,, from tanked oil, prepared in the cold with Mn resinate (0'1 per cent. in the boiled oil)					2·3- 11·5]	14·7· 16
14	,, ,, same boiled oil, heated to 170-180° C. for a short time						? -14 ·3	
15	,, ,, prepared commercially with litharge .	? -3 ·2			? -12·9		14.6- ?	_
16	,, ,, prepared commercially with manganic oxide hydrated (0.3 per cent at 220° C.)	? -0.9			? -1.3		0·8- 13·6	3·7· 14·7
17	,, ,, by heating raw oil with 0.4 per cent. PbO to 200° C.							7.8
18	,, ,, by heating raw oil with 3 per cent. red lead to 200° C.					! -		12.1
19	,, ,, "electric"					6.8-6.2		13.5 13.4
20	,, ,, "ozonised," prepared with PbMn resinate.	l i	i		5			12.9
21	,, ,, PbMn, English					15.2	- :	14.8
22	,, ,, double boiled						16.4	16.4
ļ	Varnish Oils, prepared by dissolving in 3 parts of boiled oils (Mn)—					ļ	l	
23	(a) 2 parts rosin "J" at 130° C						1.7- ?	11:
24	(b) ,, ,, heated previously 20 hours to 150° C.						11- ?	13
25	(c) ,, ,, hardened with 8 per cent. CaO, and dissolved at 170-180° C.						11:3- 1	
26	(d) 2 parts Dammara resin at 170-180° C.						11- ?	
27	(e) 2 parts Zanzibar copal at 170-180° C					;	13.2-	? 13°
28	(f) 2 parts Manila copal at 170-180° C					;		12
29	Rosin Oils— A. Specific gravity 0.980 at 14°C		·	·		•••.		-3
30	,, Same oil after dissolving in it 6 per cent. PbMn						ļ	8·5-
0.1	resinate at 120° C. B. Obtained from all A after distilling off 20 per cent			: (!	; - 1
$\begin{array}{c} \bf 31 \\ \bf 32 \end{array}$	B. Obtained from oil A after distilling off 30 per cent. ,, Oil B after dissolving in it 6 per cent. PbMn		•••			_1.		14
04	resinate at 120° C.	"	D	igitized b	GO	ogle	>	1.5
		1 '	1 '	1 1	1 7			

UNIVERSITY

OF THE

OF

CALIFORNIA

TABLE No. 39.—Oxidised Oils prepared by Treatment with Oxygen

Mixed Fatty Acids.	sponi- Oxidised Iodine Melting Solidifying Combining Saturation Iodine Value. Weight. Number. Iodine Value.	cent. Per cent. °C. °C. °C. 241.4 232.4 63.2 97 44.19 53.5 27 25 242.5 231.3 60.6 81 31.58 93.9 26 22 268.8 208.7 100.3
	. 20	28 27 88 26 27 88
	Iodine Value.	58.8 53.5 93.5
	Oxidised Acids.	Per cent. 42.82 44.19 31.58
	Unsaponi- fiable Matter.	Per cent. 0.89 0.97 0.81
Oils.	Saponifica- tion Value. Mgrms. KOH.	221 223·5 171·6
	Free Acid calculated as Oleic Acid.	Per cent. 18-28-4 18-49-28-9 12-67
	Specific Gravity at 15° C.	1.03
	20 %	weak strong doil.
		xidised oil, ried linseed

TABLE No. 40.—Some Constants and Variables of Commercial Boiled Oils

Somewhat thin and fluid Very viscid Tacky, yielding "strings"	at late.	OLI GO		Hehner Value	Hebner Value Lodine Value Theanonifiable	Theanonifiable	Oxidised Acids III	ACIDS III
Somewhat thin and fluid Very viscid Tacky, yielding "strings"		· antie.	Value.			Cusapounianie.	Boiled Oil. Dried Oil.	Dried Oil.
Somewhat thin and nuid Very viscid Tacky, yielding "strings"				Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
Very viscid	:	13.4	:	:	101.3	:	o io	30.6
Tacky, yielding "strings"	:	24.9	:	:	77.3	:	4.1	20.8
	:	35.6	:	:	73.7	:	9.7	16.4
•	:	:	188.1 - 192	92-92-3	145.1-157.2	0.3-0.72		
		-		(2 samples)		_		
:	:	:	:	· • :	149.7-153.4	_		
:	:	:	:	:		0.43-1.71		
Very thin	0.947	8.85	182.2	:	: :	2:34		
Thin	0.948	90-2	180.9			1.27		
Thin	0.961	12.43	179.5	: :	: :	2.11		
Stout	0.972	19.69	189.3	:	: :	2.01		
Stout	0.985	20.89	185.6	:	:	2.04		
Very Stout	0.983	24.97	183.0		: :	2.14		
Solid.	:	14.02	193.9		:	2.08		
	:	4.8	188.7	:	159.0)		
	:	2.5	189.1		100.7			
Women as in consistency in the come of	:	2.8	1.89.1	:	92.6			
from this to mean ricons	:	9.2	186.6		9.88			
Ironi tuin to very viscous	:	9.1	187.2	:	79.1			
	:	11.7	187.2	:	76.2			
	``	18.8	192.3	:	71.1			

			Origina	riginal Gums.				Gums aft	Gums after Heating t	to 300° C.	- , .
	Acid	Gen Welling	Unsap.,	Iodine	Value.	Sol. in	Acid	Gen Welling	Unsap.,	Iodine	Iodine Value.
	Value.	Salv. vaine.	Per cent.	IQI.	Ci.	Per cent.	Value.	oap. vame.	Per cent.	IGI.	Bi.
Copal, Commercial .	109.8	143.1	96.4	135.5	183.6	90.86	26.49	85.4	14.73	124.3	181.3
Copal, Commercial .	42.43	66.82	14.99	191-2	114.6	54.83	24.94	61.04	46.40	143.7	233.5
Copal, Sierra Leone .	. 72.83	119.03	18.81	105.7	96.05	:	12.89	114.9	17.22	125.5	173.6
Copal, Manila	. 127.6	175.17	15.98	137.9	188.2	:	68.21	136.3	52.99	133.3	186.4
Copal, Brazil	108-99	171.4	99. 2	127.7	72.66	:	46.25	113.8	38.74	136.7	225.9
Copal, Sierra Leone.	. 65.7	110.5	16.27	94.55	117.0	:	15.32	123.8	22.31	95.23	135.4
Cowrie	. 37.39	53.84	20.02	66.06	:	:	17.14	61.07	10.39	02.29	74.71
Mastic	. 52.73	81.79	51.13	175.7	185.0	84.41	23.23	50.54	49.58	165.0	217.8
Shellac, Dark	61.13	203.0	3.26	35.57	13.25						
Sandarac, Mogador .	. 134.39	143.42	13.2	112.2	86.66	:	64.84	136.14	14.28	126.4	69.13
Sandarac, Austral .	. 131.15	134.32	17.44	125.4	63.83	:	106.6	137.26	6.6		-
Animis No. 1 .	18.69	73.15	6.3	105.3	182.7	:	9.25	58.73	:	106.1	207.4
Animis No. 2	30.55	93.2	6.85	96.21	95.85						_
Dammar	. 35.22	32.73	96.92	127.5	169.4	:	10.85	60.44	29.98	127.0	196.8
Amber	16.7	121 .27	18.86	28.98	82.82			-			
Succinit	. 11.24	113.68	90-2	22.02	78.4	:	10.60	99.19	16.25	74.34	147.8
Colophony	:	:	:	:	:	:	146.46	153.01	15.94	133.7	302.1
								_			

Table No. 42.—Analyses of Lithographic Varnishes prepared by Boiling over Fire

	Iodine Value.	145.2	118.3	108.8	2. 26	87.3	8.06	8.66
	Saponifica- tion Value. Mgrms. KOH.	195.8	:	:	205.8	207.7	6. 202	:
Mixed Fatty Acids.	Mean Combining Weight.	286.5	:	:	272.6	270.1	8.69.8	:
Mixed Fa	Solidifying Point. °C.	:	15	18	22	24	83	19
	Melting Point. °C.	24-26.5	20.2	22	24	25.2	27	23
	Specific Gravity at 15.5° C.	0.923	0.941	0.949	0.950	0.953	0.955	:
	Iodine Value.	169.0	113.2	100.0	91.6	2.98	83.2	65.7
	Oxidised Acids.	Per cent.	1.20	2.20	4.20	6.50	7.50	0.82
, si	Unsaponi- fiable Matter.	Per cent.	:	0.62	0.85	64.0	0.91	1.35
Oils.	Saponifica- tion Value. Mgrms. KOH.	194.8	197.5	196.9	197.5	190.9	188.9	195.5
	Free Acids calculated as Oleic Acid.	Per cent. 0.85	1.46	1.76	1.71	2.16	2.51	6.93
	Specific Gravity at 15° C.	0.9321	0.9584	0.9661	0.9721	0.9741	0.0480	0.9675
	•	Raw linseed oil	"Tint" varnish.	"Thin" varnish.	"Middle" varnish .	"Strong" varnish .	"Extra strong" varnish	"Burnt" thin varnish

Table No. 43.—Some Commercial Driers

1				at which the	T) 1
		Theory.	Means in commercial product.	compound forms "boiled" oil.	Remarks.
2	Manganese dioxide	Per cent. 63.2 62.5	Per cent. 55 (30-60) 45-50	°C. abt. 250 170-200 better at	Degree of fineness
3	Manganese peroxide hydrated	52.4	45-50	200-220	plays an important
4	Lead oxide (Litharge) .	92.8	about 93	l)	part.
5	Red lead (Minium)	91.2	about 91	11 '	1
6	Manganese borate .		15 (5-22)	in the	J
7	Manganese acetate, cryst	22.2	about 22	cold.	Melt in water of crystallisation; used best
8	Sugar of lead, cryst	54.6	about 54	IJ	as anhydrous salts.
	Manganese oxalate	30.4	about 30	above 280	•
	Manganese carbonate	41.4	about 41	about 280	
11	Manganese resinate, precipi-				
	tated	abt. 7.7	about 7	D 1)
	Manganese resinate, fused .	abt. 5.3	2.5-4.5	Soluble	
	Manganese linoleate	abt. 8.9	about 9	in the	Soluble driers.
	Mangano-lead resinate, fused			cold.	
	Mangano-lead linoleate .			l cola.	J .
16	"Siccative powdered".	• •••	0.2-3	J [

5. VULCANISED OILS

Table No. 44.—Vulcanised Oils—India Rubber Substitutes

	Iodine Value.	160-3	121.0	101.5	133.3 91.5	136.2	105.6	91 3 91 2 102 3 129 0
Fatty Acids.	Chlorine.	Per cent. Trace	09.0	Trace Trace	Trace	Trace	97.0	0.83
Ē	Sulphur.	ند	4.06	8 :34 5 :54	8.32 6.44	5.32	:	6.12 6.45 8.15 14.14 15.20
Acetyl	Value.	21.0	19.6	31.0	51.3	:	105.6	:::::
Iviline	Value.	Per cent. 56·3	25.6	35.2 56.9 76.9	93.00 30.30	35.2	21.9	80.9 81.0 82.6 42.0
	Acids.	Per cent. 79.6	81.67	86.89	74.90	85 .35	:	90.45
Besidneon	Ignition.	Per cent.	:	: :	: :	:	:	0.8 5.51
	Water.	Per cent. 3.02	0.85	: :	:::	:	' :	0.85 1.0
	Chlorine.	Per cent. 8.84	4.85	7.62	7.44	02.9	8.95	5.0 5.88 6.7 0.36
	Sulphur.	Per cent. 9.34	4.78	8.58	7.68	4.82	10.60	6.4 6.17 8.25 15.48 17.71
	Oils vulcanised with S ₂ Cl ₂ .	rubber substitute from	"	::		with minimu	Castor oil ", ", maximum,, ", .	Commercial Products. White substitute, No. 1

6. CANDLE-MAKING

TABLE No. 45

Milk of Lime in Degrees Baumé obtained from 1 Kilogram Caustic Lime

1 Kilogram (yields Milk	Caustic Lime of Lime of	Weight of Milk of Lime.	1 Kilogram yields Mill	Caustic Lime k of Lime of	Weight of Mill of Lime.
Degrees Baumé.	Liter.	Kilograms.	Degrees Baumé.	Liter.	Kilograms.
10	7:50	9.44	38	3.39	5.07
11	7.10	9.01	39	3.37	5.05
12	6.70	8.60	40	3.35	5.03
13	6.30	8.20	41	3.34	5.01
14	5.88	7.80	42	3.32	5.00
15	5.50	7.43	43	3.31	4.98
16	5.25	7.16	44	3.30	4.96
17	5.01	6.92	45	3.29	4.95
18	4.80	6.70	46	3·2 8	4.93
19	4.68	6.51	47	3.27	4.92
20	4.42	6.38	48	3.26	4.90
21	4.24	6.18	49	3.25	4.89
22	4.16	6.05	50	3.24	4.88
23	4.05	5.92	51	3.23	4.87
24	3.95	5.81	52	3.220	4.86
25	3.87	5.72	53	3.215	4.85
26	3.81	5.63	54	3.210	4.84
27	3.75	5.26	55	3.205	4.83
28	3.70	5.49	56	3.200	4.82
29	3.65	5.43	57	3.195	4.81
30	3.60	5.36	58	3.190	4.800
31	3.26	5.31	59	3.185	4.795
32	3.52	5.27	60	3.180	4.790
33	3.49	5.22	61	3.175	4.780
34	3.47	5.19	62	3.170	4.775
35	3.45	5.16	63	3.165	4.770
36	3.43	5.13	64	3.160	4.760
37	3.41	5.10	65	3.150	4.750

TABLE No. 46.—Percentages of Caustic Lime in Milk of Lime

Degrees Baumé.	Per cent.	100 Liter contain Kilo- grams CaO.	Degrees Baumé.	Per cent.	100 Liter contain Kilo- grams CaO.
10	10.60	18.3	38	19.72	29.5
11	11.12	14.2	39	19.80	29.6
12	11.65	15.2	40	19.88	29.8
13	12.16	16.1	41	19.95	29.9
14	12.68	17.0	42	20.03	30.1
15	13.20	18.0	43	20.10	30-2
16	13.72	18.9	44	20.16	30.3
17	14.25	19.8	45	20.22	30.4
18	14.77	20.7	46	20.27	30.5
19	15.23	21.6	47	20.32	30.6
20	15.68	22.4	48	20.37	30.7
21	16.10	23.3	49	20.43	30.7
22	16.52	24.0	50	20.48	30.8
23	16.90	24.7	51	20.53	30.9
24	17.23	25.3	52	20.57	31.0
25	17.52	25.8	53	20.62	31.1
26	17.78	26.3	54	20.66	31.1
27	18.04	26.7	55	20.70	31.2
28	18.26	27.0	56	20.74	31.3
29	18.46	27.4	57	20.78	31.3
30	18.67	27.7	58	20.82	31.4
31	18.86	27.9	59	20.85	31.4
32	19.02	28.2	60	20.89	31.5
33	19.17	28.4	61	20.93	31.5
34	19.31	28.7	62	20.97	31.6
35	19.43	28.9	63	21.00	31.6
36	19.53	29.1	64	21.03	31.7
37	19.63	29.3	65	21.05	31.7

TABLE No. 47.—Sulphuric Acid required to saturate 100 Kilograms of Lime

Degrees Beaumé.	Containing Acid of 66° Beaumé.	Kilograms Acid required for 100 Kilograms	Kilograms Water to be added to 100 Kilograms Acid to obtain Acid of Degrees Baumé.						
	Per cent.	CaO.	5° B.	10° B.	15° B.	20° B.	25° B.		
66	100.0	175.0	2477	1318	831	554	400		
65	97.04	180.3	2471	1313	826	548	395		
64	94.10	186.0	2465	1303	820	543	389		
63	91.16	196.5	2455	1297	810	532	380		
62	88.22	198.4	2451	1294	807	529	376		
61	85.28	205.2	2446	1288	801	525	370		
60	82.24	212.5	2439	1280	794	516	362		
59	80.72	216.8	2434	1276	789	512	358		
58	79.12	221.2	2430	1272	785	508	354		
57	77.52	226.0	2425	1267	780	503	349		
56	75.92	230.5	2421	1263	775	498	344		
55	74.32	235.4	2416	1255	770	494	339		
54	72.70	240.7	2411	1252	765	488	334		
53	71.17	245 9	2405	1247	760	481	328		
52	69.30	252.5	2399	1241	754	476	322		
51	68.05	257.2	2494	1235	748	471	318		
50	66.49	263.3	2386	1230	743	465	314		
49	64.37	271.9	2379	1222	734	457	303		
48	62.80	278.7	2372	1214	727	450	297		
47	61.32	285.4	2366	1208	721	443	289		
46	59.85	292.4	2359	1201	714	436	272		
45	58.05	302.0	2349	1188	704	427	273		

TABLE No. 48

Melting Points of Mixtures of Lauric Acid with Myristic, Palmitic, and Stearic Acids (Heintz)

Lauric Acid.	Муг	istic Açid.	Palu	nitic Acid.	Ster	aric Acid.
Per cent.	Per cent.	Melting Point.	Per cent.	Melting Point.	Per cent.	Melting Point
		°C.		°C.		°C.
100	0	43.6	0	43.6	0	43.6
90	10	41.3	10	41.5	10	41.5
80	20	38.5	20	37.1	20	38.5
70	30	35.1	30	38.3	30	43.4
60	40	36.7	40	40.1	40	50.8
50	50	37.4	50	47.0	50	55.8
40	60	43.0	60	51.2	60	59.0
30	70	46.7	70	54.5	70	62.0
20	80	49.6	80	57.4	80	64.7
10	90	51.8	90	59.8	90	67.0
0	100	53.8	100	62.0	100	69.2

TABLE No. 49

Melting Points of Mixtures of Myristic Acid with Palmitic and Stearic Acids (Heintz)

Myristic Acid.	Palmi	tic Acid.	Stear	ic Acid.
Per cent.	Per cent.	Melting Point.	Per cent.	Melting Point
		°C.		°C.
100	0	53.8	0	53.8
90	10	51.8	10	51.7
80	20	49.5	20	47.8
70	30	46.2	30	48.2
60	40	47.0	40	50.4
50	50	47.8	50	54.5
40	60	51.5	60	59.8
30	70	54.9	70	62.8
20	80	58.0	80	65.0
10	90	60.1	90	67.1
0	100	62.0	100	69.2

TABLE No. 50

Melting Points of Mixtures of Palmitic Acid with Stearic Acid

			Melting Point.	
Palmitic Acid.	Stearic Acid.	Heintz.	Hehner and Mitchell.	De Visser.
Per cent.	Per cent.	*C.	°C.	°C.
100	0	62.0	61.8	62.618
90	10	60.1	59.0	59.31
85	15			57.80
80	20	57.5	56.5	56.53
75	25	•••		55.46
71	29	•••	1 1	54.92
70	30	55.1	54.2	54.85
68	32			55.12
67.5	32.5	55 ·2	54.5	
66	34			55:38
64	36	•••	"	55.62
63	37	•••		55.75
62	38	•••		55.88
61	39	•••		56.00
60	40	56:3	55:5	56.11
59	41		1	56.19
		•••		56·25
58	42	•••		56·31
57	43	•••		
56	44	•••		56.36
55	45	•••		56.38
54	46	•••		56.39
53	47	•••		56.40
52	48	•••		56.40
51	49	•••		56.41
50	50	56.5	55.6	56.42
49	51			56.44
48	52			56.50
47	53			56.63
46	54			56.85
45	55			57:20
40	60	60.3	59.4	58.76
30	70	62.9	61.5	61.73
20	80	65.3	64.2	64.51
10	90	67.2	66.5	67.02
ő	100	69.2	68.5	69.32

TABLE No. 51.—Acid Values and Mean Molecular Weights of Mixtures of Stearic and Palmitic Acids

Acid Value.	Mean Molecular	100 parts of the mixture contain			
Mgrms. of KOH per 1 grm.	Weight.	Stearic Acid.	Palmitic Acid.		
197.5	284.0	100	_		
198.5	282.6	95	5		
199.5	281.2	90	10		
200.5	279.8	85	15		
201.5	278.4	80	20		
202.5	277.0	75	25		
203.5	275.6	70	30		
204.6	274.2	65	35		
205.6	272.8	60	40 ·		
206.7	271.4	55	45		
207.77	270.0	50	50		
208.86	268.6	45	55		
209.95	267.2	40	60		
211.06	265.8	35	65		
212.18	264.4	30	70		
213:30	263.0	25	75		
214.45	261.6	20	80		
215.60	260.2	15	85		
216.77	258.8	10	90		
217.95	257 • 4	5	95		
219.13	256.0		100		

TABLE No. 52.—Solidifying Points of Mixtures of Commercial Stearic and Oleic Acids (Dalican)

Solidifying Point.	Commercial Stearic Acid.	Oleic Acid.	Solidifying Point.	Commercial Stearic Acid.	Oleic Acid.
C.	Per cent.	Per cent.	C.	Per cent.	Per cent.
35	25.20	69.80	44	47.50	47.50
35 ·5	26.40	68.60	44.5	49.40	45 60
36	27:30	67.70	45	51.30	43.70
36.5	28.75	66.25	45.5	52.25	42.75
37	29.80	65.20	46	53.20	41.80
37.5	30.60	64.40	46.5	55.10	-39-90
38	31.25	63.75	47	57.95	37.05
38.5	32.15	62.85	47.5	58.90	36.10
39	33.44	61.55	48	61.75	33.25
39.5	34.30	60.80	48.5	66.50	28.50
40	35.15	59.85	49	71.25	23.75
40.5	36.10	58.90	49.5	72.20	22.80
41	38-00	57.00	50	75.05	19.95
41.5	38.95	56.05	50.5	77.10	17.90
42	39.90	55.10	51	79.50	15.50
42.5	42.75	52.27	51.5	81.90	13.10
43	43.70	51.30	52	84.00	11.00
43.5	44.65	50.35	52.5	88.30	6.70
	00		53	92.10	2.90
			53	92.10	2.80

Table No. 53

Solidifying Points of "Stearines" obtained by the Acid Saponification Process (De Schepper and Geitel)

Solidi-			Percentage	of "Steari	ne" of Solid	lifying Poin	it.		
fying Point.		Palm Oil.			Tallow.				
°C.	48°	50°	52°	55·4°	48°	50°	52°	54·8°	
5							•••		
10	4.2	3.6	3.3	2.6	3.2	2.7	2.3	2.1	
15	10.2	9.8	7.8	6.6	7.5	6.6	5.7	4.8	
20	17.4	15.0	14.4	11.0	13.0	11.4	9.7	8.2	
25	26.2	22.4	19.3	16.2	19.2	17.0	14.8	12.6	
30	34.0	30.5	26.6	22.3	27.9	23.2	21.4	18:3	
35	45.6	40.8	35.8	29.8	39.5	34.5	30.2	25.8	
36	48.5	43.2	38.0	31.8	42.5	36.9	32.5	27.6	
37	51.8	45.5	40.3	33.6	46.0	40.0	34.9	29.6	
38	55.5	48.8	42.6	35.8	49.5	42.6	37.5	32.0	
39	59.2	51.8	45.6	38.2	53.2	45.8	40.3	34.3	
40	63.0	55.2	48.6	40.6	57.8	49.6	43.5	37.0	
41	66.6	58.7	52.0	43.0	62.2	53.5	47.0	40.0	
42	70.5	62.2	55.2	45.5	66.6	57.6	50.5	42.9	
43	74.8	66.0	58.8	48.5	71.8	62.0	54.0	46.0	
44	79.2	70.2	62.0	51.4	77.0	66.2	58.4	49.8	
45	84.0	74.5	66.0	54.3	81.8	71.0	62.6	53.0	
46	89.4	78.8	69.8	57.8	87.5	75.8	67.0	56.8	
47	94.3	83.0	74.0	61.0	93.3	80.9	71.5	60.8	
48	100.0	88.0	78.6	65.0	100.0	87.2	76.6	65.0	
49	•••	94.2	83.5	69.1		93.0	84.7	69.5	
50		100.0	89.0	73.4		100.0	87.0	74.5	
51			94.5	78.0			93.5	79.8	
52	•••		100.0	82.8			100.0	84.8	
53	•••			87.6				90.1	
54				92.2				95.3	
55	•••			97.5			(54.8)	100.0	
55.4				100.0			` ´		

Table No. 54.—"Stearine" in Red Oils from the Acid Saponification Process

Solidifying Point of the Mixture.	Stearine of Solidifying Point 48° C.	Solidifying Point of the Mixture.	Stearine of Solidifying Point 48° C.	Solidifying Point of the Mixture.	Stearine of Solidifying Point 48° C.
°C.	Per cent.	°C.	Per cent.	°C.	Per cent.
5.4		20	12.1	35	39.5
6	0.3	21	13.2	36	43.0
7	0.8	22	14.5 .	37	46.9
8	1.2	23	15.7	38	50.5
9	1.7	24	17.0	39	54.5
10	2.5	25	18.5	40	58.9
11	3.2	26	20.0	41	63.6
12	3.8	27	21.7	42	68.5
13	4.7	28	23.3	43	73.5
14	5.6	29	25.2	44	78.9
15	6.6	30	27.2	45	83.5
16	7.7	31	29.2	46	89.0
17	8.8	32	31.5	47	94.1
18	9.8	33	33.8	48	100.0
19	11.1	34	36.6	1	

TABLE No. 55.—Percentages of Oleic Acid in Red Oils (Mangold)

Iodine	Product	contains	Iodine	Product	contains	Iodine	Product	contains
Value.	Oleic Acid.	"Stearine."	Value.	Oleic Acid.	"Stearine."	Value.	Oleic Acid.	"Stearine."
	Per cent.	Per cent.		Per cent.	Per cent.		Per cent.	Per cent.
0	0	100	31	34.41	65.59	62	68.83	31.17
1	1.11	98.89	32	35.52	64.48	63	69.94	30.06
2	2.22	97.78	33	36.63	63:37	64	71.05	28:95
3	3.33	96.67	34	37.74	62.26	65	72.16	27.84
4	4.44	95.56	35	38.85	61.15	66	73.27	26.73
5	5.55	94.45	36	39.96	60.04	67	74.38	25.62
6	6.66	93.34	37	41.07	58.93	68	75.49	24.51
7	7.77	92.23	38	42.18	57.82	69	76.60	23.40
8	8.88	91.12	39	43.29	56.71	70	77.71	22.29
9	9.99	90.01	40	44.40	55.60	71	78.82	21.18
10	11.10	88.90	41	45.51	54.49	72	79.93	20.07
11	12.21	87.79	42	46.62	53.38	73	81.04	18.96
12	18.32	86.68	43	47.73	52.27	74	82.15	17.85
13	14.43	85.57	44	48.84	51.16	75	83.26	16.74
14	15.54	84.46	45	49.95	50.05	76	84.37	15.63
15	16.65	83.35	46	51.06	48.94	77	85.48	14.52
16	17.76	82.24	47	52.17	47.83	78	86.59	13.41
17	18.87	81.13	48	53.28	46.72	79	87.70	12.30
18	19.98	80.02	49	54.39	45.61	80	88.82	11.18
19	21.09	78.91	50	55.50	44.49	81	89.93	10.07
20	22.20	77.80	51	56.62	43.38	82	91.04	8.96
21	23:31	76.69	52	57.73	42.27	83	92.15	7.85
22	24.42	75.58	53	58.84	41.16	84	93.26	6.74
23	25.53	74.47	54	59.95	40.05	85	94.37	5.63
24	26.64	73.36	55	61.06	38.94	86	95.48	4.52
25	27.75	72.25	56	62.17	37.83	87	96.59	3.41
26	28.86	71.14	57	63.28	36.72	88	97.70	2.30
27	29.97	70.03	58	64.39	35.61	89	98.81	1.19
28	31.08	68.92	59	65.20	34.50	90.07	100	0
29	32.19	67.81	60	66.61	33.39			
30	33.30	66.70	61	67.72	32.28			1

TABLE No. 56

Melting Points of Mixtures of Palmitic and Cerotic Acids
(Lewkowitsch)

Cerotic Acid.	Melting Point.
Per cent.	°C.
0	60.0
10	56.0
15	56.5
25	60.5
40	65.5
50	68.6
60	70-0
100	78.5
	Per cent. 0 10 15 25 40 50 60

Table No. 57

Melting Points of Fractions Obtained from Scotch Paraffin Waxes

No. of Fraction.	Of Melting Point 126° F.	Of Melting Point 111° F.	Of Melting Point 102° F.
1	119.0	103.0	94.0
2	120.0	104.0	94.0
3	120.5	104.0	95.0
4	121.0	105.0	96.0
5	121.0	106.0	96.0
6	121.0	107.0	97.5
7	121.5	107.5	98.0
8	122.0	108.0	98.5
9	122.5	108.5	99.0
10	123.0	109.0	99.0
11	124.0	110.5	100.0
12	125.0	112.0	102.0
13	126.0	113.0	103.5
14	127.0	113.5	105.0
15	128.0	114.5	106.5
16	129.0	116.0	108.0
17	130.0	117.0	109.0
18	132.0	119.0	110.0
19	134.0	123.0	112.5
20	138.0	125.0	113.0

Table No. 58

Specific Gravity of Paraffin Waxes (Allen)

No.	Origin of Sample.	Specific	Specific Gravity.			
110.	Origin of Sample.	Solid, at 15° C.	Liquid, at 99° C.	°C.		
1 2 3	Shale oil	0.8666 0.8961	0*7481 0*7494	44.0 47.0		
3 4 5	,, ,, .	0.9000 0.9111	0.7517 0.7572	52·0 58·5		
5 6	American petroleum Ozokerit	0.9083	0.7535 0.7531	53·8 61·5		
7	Rangoon tar	0.8831	0.7571	49.0		

Table No. 59

Specific Gravities of Melted Paraffin Waxes (I. I. Redwood)

°F. at which determined.	Melting Point 108° F.	Melting Point 114° F.	Melting Point 120.5° F.	Melting Point 122°25° F.	Melting Point 122.75° F.	Melting Point 128·25° F.	Melting Point 183·25° F.
160 155 150 145 140 135 130 125 120	0.77069 0.77119 0.77309 0.77509 0.77679 0.77899 0.78049 0.78199 0.78359 0.78529	0·77193 0·77330 0·77473 0·77620 0·77763 0·77953 0·78113 0·78343 0·78473	0·77391 0·77531 0·77657 0·77777 0·77847 0·78147 0·78267 0·78441	0·77079 0·77149 0·77319 0·77519 0·77689 0·77869 0·78029	0·77023 0·77163 0·77283 0·77463 0·77633 0·77843 0·77973	0·77573 0·77653 0·77803 0·77973 0·78133 0·78303	0·77723 0·77853 0·78003 0·78153 0·78333

Table No. 60

Specific Gravities of Solid Paraffin Waxes at 60° F. (I. I. Redwood)

Melting	Melting	Melting	Melting	Melting	Melting
Point	Point	Point	Point	Point	Point
106° F.	111.5° F.	120.5° F.	122-25° F.	125.75° F.	131° F.
0.87525	0.88230	0.89895	0.90102	0.90350	0.90865

TABLE No. 61

Solubility of Paraffin Wax

Solvent.		araffin Wax ved by	Weight of Solvent required to dis- solve completely 1 Part of Paraffin Wax.
	100 grms.	100 c.c.	Grs.
Carbon bisulphide	12.99		7.6
spec. grav. = 0.7233. Oil of turpentine; spec. grav. = 0.857,	11.73	8.48	8.5
boiling point 158°-166° C. Cumene comm. boiling up to 160° C.;	6.06	5.21	16.1
spec. grav. = 0.867	4.28	3.72	23.4
grav. = 0.847	3.99	3.39	25.0
grav. = 0.866	3.95	3.43	25.1
grav. = 0.864	4:39	3.77	22.7
grav. = 0.866	3.83	3:34	26.1
grav. = 0.866	3.92	3.41	25.5
Chloroform .	2.42	3.61	41.3
Benzene	1.99	1.75	50.3
Ethyl ether	1.95		50.8
Isobutyl alcohol, spec. grav. = 0.804 .	0.285	0.228	352.9
Acetone, 55.5°-56.5° C.; spec. grav.			
=0.797	0.262	0.209	378.7
Ethyl acetate	0.238	•••	419.0
Ethyl alcohol, 99.5° Tr.	0.219		453.6
Amyl alcohol, 127°-129° C.; spec. grav.			
=0.813	0.202	0.164	495.3
Propionic acid	0.165	•••	595.3
Propyl alcohol	0.141	•••	709.4
Methyl alcohol, 65.5°-66.5° C.; spec.			
grav. = 0.798	0.071	0.056	1447.5
Methyl formate	0.060	•••	1648.7
Glacial acetic acid	0.060	0.063	1668.6
Ethyl alcohol, 64.3° Tr	0.046	•••	2149.5
Acetic anhydride	0.025	•••	3856.2
Formic acid (cryst.)	0.013	0.012	7689.2
Ethyl alcohol, 75° Tr	0.0003	•••	330000.0

Table No. 62

Melting Points of Candle Material from "Mixed Paraffin Wax (Scotch) and Stearine" (I. I. Redwood)

A

Para	Paraffin Wax. Stearine.			
Per cent.	Melting Point.	Per cent.	Melting Point.	Melting Point.
	°F.		°F.	°F.
90	102	10	121	100
80	,,	20	,,	98.50
70	,,	30	,,	100.0
60	,,	40	,,	104.50
50	,,	50	,,	110.50
40	,,	60	,,	111.0
30	,,	70	,,	113.50
20	,,	80	,,	117:50
10	,,	90	,,	119.0

В

Para	ffin Wax.	St	earine.	Mixture.
Per cent.	Per cent. Melting Point.		Melting Point.	Melting Point.
	°F.		°F.	°F.
90	120	10	123	118
80	,,	20	,,	116.20
70	,,	30	,,	114
60	,,	40	,, .	112
50	,,	50	,,	110
40	,,	60	,,	109
30	,,	70	,,	113
20	,,	80	,,	118.50
10	,,	90	,,	119.50

C

Para	ffin Wax.	Stearine.		Stearine.		Mixture.
Per cent.	Melting Point.	Per cent. Melting Point.		Melting Point		
	°F.		°F.	°F.		
90	120.25	10	129.75	118.50		
80	,,	20	,,	116.75		
70	,,	30	,,	114.20		
60	,,	40	,,	112.25		
50	,,	50	,,	113		
40	,,	60	,,	118.75		
30	,,	70	,,	122		
20	,,	80	,,	124.50		
10	,,	90	,,	127		

D

Paraffin Wax.		St	Mixture.	
Per cent.	Per cent. Melting Point.		Melting Point.	Melting Point.
	•F.		°F	°F.
90	125	10	121	123
80	,,	20	,,	121
70	,,	30	,,	119
60	,,	40	,,	117:50
50	,,	50	,,	114
40	,,	60	,,	111
30	,,	70	,,	107
20	,,	80	,,	114
10	,,	90	,,	117

E

Para	ffin Wax.	St	Mixture.	
Per cent.	Melting Point.	Melting Point. Per cent.		Melting Point.
	°F.		°F.	°F .
90	130	10	121	128
80	,,	20	,,	125.50
70	,,	30	,,	123
60	,,	40	,,	121
50	,,	50	,,	118:50
40	,,	60	,,	114
30	,,	70	,,	109
20	,,	80	,,	115.50
10	,,	90	,,	118

F

Para	ffin Wax.	St	Stearine.			
Per cent.	Melting Point.	Per cent. Melting Point.		Melting Point		
	°F.		°F.	°F.		
90	132.50	10	129.75	130.50		
80	,,	20	,,	128.50		
70	,,	30	,,	126.50		
60	,,	40	,,	124 · 25		
50	,,	50	,,	121.0		
40	,,	60	,,	117.75		
30	,,	70	,,	119.50		
20	,,	80	,,	125.25		
10	,,	90	,,	127:50		

TABLE No. 63

Melting Points of Candle Material from mixed Paraffin Wax (Thuringian) and "Stearine" (Scheithauer)

Paraffin Wax.	Of Melting Point.	"Stearine" Acid of Melting Point 54° C.	Melting Point o Mixture.			
Per cent.	°C.	Per cent.	*C.			
90.0	36.5	10.0	36.5			
66.6	,,	33.3	39.0			
33.3	,,	66.6	45.75			
10.0	,,	90.0	51.75			
90.0	37.5	10.0	36.5			
66.6	,,	33.3	35.5			
33 ·3	,,	66.6	47.0			
10.0	,,	90.0	52.0			
90.0	40.75	10.0	39.75			
66.6	,,	33.3	40.50			
33· 3	,,	66.6	47.50			
10.0	,,	90.0	52.0			
90.0	45.0	10.0	44.0			
66.6	,,	33.3	40.75			
33.3	,,	66.6	48.0			
10.0	,,	90.0	52.5			
90.0	48.5	10.0	47.5			
66:6	,,	33.3	45.0			
33.3	,,	66.6	47.75			
10.0	,,	90.0	52·50			
90.0	50.0	10.0	49.0			
66.6	,,	33.3	47.0			
33.3	,,	66.6	47.5			
10.0	"	90.0	52.5			
80.0	54.0	10.0	53.0			
66.6	,,	33.3	49.0			
33.3	,,	66.6	47.0			
10.0	,,	90.0	52.5			
90.0	56.5	10.0	55.5			
66.6	,,	33.3	52.0			
33.3	,,	66.6	47.5			
10.0	,,	90.0	52.5			

TABLE No. 64

Mixed Ceresine and Beeswax Candle Material

Yellow Beeswax.	Yellow Ceresine.	Specific Gravity of the Mixture.	White Beeswax.	White Ceresine.	Specific Gravity of the Mixture.
100	0	0.963	100	0	0.973
90	10	0.961	90	10	0.968
80	20	0.9575	80	20	0.962
70	30	0.953	70	30	0.956
60	40	0.950	60	40	0.954
50	50	0.944	50	50	0.946
40	60	0.937	40	60	0.938
30	70	0.933	30	70	0.934
20	80	0.931	20	80	0.932
10	90	0.929	10	90	0.930
0	100	0.922	0	100	0.918

Table No. 65

Mixed Ceresine and Paraffin Wax Candle Material (Berlinerblau)

Caractin Paraffin		Melting	Solidifying	Sp	ecific Gravity	at .
Ceresine.	Wax. Point. Point. 15° C.	15° C.	88°-85° C.	95° C.		
Per cent.	Per cent.	°C.	°C.			
100	0	70-73	69.5	0.921	0.7835	0.774
95	5	69-73	68.5	0.919		ŀ
90	10	68-72	66.2	0.9175	0.7800	
80	20	66-71.5	65.0	0.914	0.7775	
70	30	64.5-70	63.0	0.910	0.7750	
60	40	62-69	62.0	0.907		
50	50	58.5-67	60.0	0.904	0.7705	
40	60	56.5-65	59.0	0.800		
30	70	54.5-62	57.0	0.897		
20	80	52.5-58.5	54.0	0;894		
10	90	49.5-54.5	49.0	0.892		
0	100	47-52	47.0	0.889	0.7655	0.756

Table No. 66.—Commercial Oleines (Oleic Acids)

;	Iodine Value.		:	:	:	:	:	:		:	:		:	:	:	8
l Fat.	By Differ- ence.	Per cent.	5.2	17.5	:	:	60	17.0	:	5.0	9.8		9.9	1.2	:	:
Neutral Fat.	Direct.	Per cent	:	;	11.5	14.0	:	13.4	:	ဇာ	:		:	:	3.4	:
Un.	saponi- fiable.	Per cent.	1.3	2.5	:	:	6. g	5.9	4.8	10.3	2.0		3.5 8	1.0	5.6	:
90,5	Fatty Acids.	Per cent.	8.96	80.3	88.5	9.98	8.86	83.7	96.5	84.2	89.4		85-2	8.26	94.6	:
Specific	Gravity at 15·5°C.		9668.0	0.9055	:	:	:	0.9085	0.9014	1868.0	:		:	:	:	:
	Colour.		Pale brown	Brown	Dark brown	:	Pale brown	Brown	Pale brown	į	:		Pale brown	White	Pale brown	2
	Condition.		Clear	Fluid, with slight deposit Brown)	Clear		Semi-solid	:	Contained much solid	:		Clear	Solid at 15° C.	Clear	*
	Commercial Oleine from		Tallow by autoclave process			Tallow and palm oil (Belgian) .	(i) (ii)		Autoclave oleine	French	Tallow by lime saponification	Tallow and palm oil by acid saponifica-	Triban	tation and pain on by acid saponnes-	Tallow and palm on by nme saponinca- tion	Tallow by autoclave process

7. SOAP MANUFACTURE

TABLE No. 67

Percentages of Caustic Soda and Caustic Potash in Caustic Lyes

Degrees Twaddell.	Specific Gravity.	Na ₂ O. Per cent.	NaOH. Per cent.	K ₂ O. Per cent.	KOH. Per cent.
0.7	1.0035	0.23	0.30	0.35	0.45
1.4	1.0070	0.47	0.61	0.70	0.90
$\bar{2}\cdot\bar{1}$	1.0105	0.70	0.90	1.05	1.30
2.8	1.0141	0.93 -	1.20	1.40	1.70
3.6	1:0177	1.26	1.60	1.80	2.15
4.4	1.0213	1.55	2.00	2.20	2.60
5.1	1.0249	1.83	2.36	2.55	3.05
5.8	1.0286	2.10	2.71	2.90	3.50
6.6	1.0323	2.35	3.03	3.35	4.00
7.4	1.0360	2.60	3.35	3.80	4.50
8.2	1 0397	2.85	3.67	4.25	5.05
9.0	1.0435	3.10	4.00	4.70	5.60
9.7	1.0473	3.35	4:32	5.05	6.00
10.4	1.0511	3.60	4.64	5.40	6.40
11.2	1.0549	3.85	4.96	5.80	6.80
12.0	1.0588	4.10	5.29	6.20	7.40
12.7	1.0627	4.32	5.28	6.55	7.80
13.4	1.0667	4.55	5.87	6.90	8.20
14.2	1.0706	4.82	6.21	7:30	8.70
15.0	1.0746	5.08	6.21	7.70	9.20
15.8		5.37	6.76	8.10	9.65
16.6	1·0787 1·0827	5.67	7.31	8.50	10.10
			7.66		
17:3	1.0868	5.84		8.85	10.50
18.2	1.0909	6.20	8.00	9.20	10.90
19.1	1.0951	6.46	8:34	9.65	11.45
20.0	1.1000	6.73	8.68	10.10	12.00
20.8	1.1035	7.06	9.05	10.45	12.45
21.6	1.1077	7:30	9.42	10.80	12.90
22.4	1.1120	7.55	9.74	11.25	13.35
23.2	1.1163	7.80	10.06	11.60	13.80
24.1	1.1206	8.65	10.51	12.00	14.30
25.0	1.1250	8.50	10.97	12.40	14.80
25.9	1.1294	8.84	11.42	12.80	15.25
26.8	1.1339	9.18	11.84	13.20	15.70
27.6	1.1383	9.49	12.24	13.55	16.10
28.4	1.1423	9.80	12.64	13.90	16.50
29.4	1.1474	10.15	13.00	14.35	17.15
30.4	1.1520	10.50	13.55	14.80	17.60
31.4	1.1566	10.82	13.86	15.20	18.10
32.4	1.1613	11.14	14.37	15.60	18.60
33.6	1.1660	11.43	14.75	16.00	19.05
34.2	1.1707	11.73	15.13	16.40	19.50
35.1	1.1755	12.03	15.50	16.80	20.00
36.0	1.1803	12:33	15.91	17.20	20.50
37.0	1.1852	12.66	16.38	17.60	20.95
38.0	1.1901	13.00	16.77	18.00	21.40
39.0	1.1950	13.35	17.22	18.40	21.90
40.0	1.2000	13.70	17.67	18.80	22.50
41.0	1.2050	14.05	18.12	19.20	22.85
42.0	1.2101	14.40	18.58	19.60	23.30
43.0	1.2152	14.74	19.08	19.95	23.75

TABLE No. 67—continued

Percentages of Caustic Soda and Caustic Potash in Caustic Lyes

Degrees Twaddell.	Specific Gravity.	Na ₂ O. Per cent.	NaOH. Per cent.	K ₂ O. Per cent.	KOH. Per cent.
44.0	1.2202	15.18	19.58	20:30	24.20
45.1	1.2255	15.57	20.08	20.70	24.65
46.2	1.2308	15.96	20.59	21.10	25.10
47.1	1.2361	16:36	. 21.00	21.50	25.60
48.2	1.2414	16.76	21.42	21.90	26.10
49.3	1.2468	17.18	22.03	22:30	26.50
50.4	1.2522	17.55	22.64	22.70	27:00
51.5	1.2576	17.85	23.15	23.10	27.50
52.6	1.2632	18:35	23.67	23.50	28.00
53.7	1.2687	18.78	24.24	23.85	28.45
54.8	1.2743	19-23	24.81	24.20	28.90
55.9	1.2800	19.61	25.30	24.60	29.35
57.0	1.2857	20.00	25.80	25.00	29.80
58.2	1.2905	20.40	26.31	25.40	30.25
59.4	1.2973	20.80	26.83	25.80	30.70
60.5	1.3032	21.02	27.31	26.25	31.25
61.6	1.3091	21.55	27.80	26.70	31.80
62.8	1.3151	21.95	28.31	27.10	32.25
64.0	1.3211	22.35	28.83	27.50	32.70
65.2	1.3272	23.67	29.38	27.90	33.20
66.4	1.3333	23.20	29.93	28:30	33.70
67.7	1.3395	23.75	30.57	28.80	34.30
69.0	1.3458	24.20	31.22	29.30	34.90
70.2	1:3521	24.68	31.85	29.75	35.40
71.4	1.3585	25.17	32.47	30.20	35.90
72.7	1.3649	25.68	33.08	30.60	36.40
74.0	1.3714	26.12	33.69	31.00	36.90
75.3	1.3780	26.61	34.38	31.40	37.35
76.6	1.3846	27.10	34.96	31.80	37.80
78.5	1.3913	27.60	35.65	32.25	38.35
79.4	1.3981	28.10	36.25	32.70	38.90
80.7	1.4049	28.58	36.86	33.10	39.40
83.0	1.4187	29.56	38.13	33.95	40.40
84.8	1.4267	30.08	38.80	34.40	40.90
86.2	1.4328	30.54	39.39	34.90	41.50
87.6	1.4400	31.00	39.99	35.40	42.10
89.0	1.4472	31.20	40.75	35.95	42.75
90.6	1.4545	32.10	41.41	36.20	43.40
92.2	1.4619	32.65	42.12	37.00	44.00
93.6	1.4694	33.20	42.83	37.50	44.60
95.1	1.4769	33.80	43.66	88.00	45.20
96.6	1.4845	34.40	44.38	38.20	45.80
98.1	1.4922	35.05	45.27	39.05	46.45
99.6	1.5000	35.70	46.15	39.60	47.10
101.2	1.5079	36.30	46.87	40.15	47.70
102.8	1.5158	36.90	47.60	40.60	48.30
104.4	1.5238	37.45	48.81	41.05	48.85
106.0	1.5319	38.00	49.02	41.50	49.40

TABLE No. 68, see pages 112-115.

Table No. 69

Caustic Alkali Solutions required to saponify Fats of Mean Molecular Weight 860 (Tallow, Cottonseed Oil, Olive Oil, etc.)

				Gallons of	Solution.			
Weight of Fat in Tons.		20° Twaddell = S. G.		40° Twaddell=S. G. 1·2.		idell=8. G. ·8.	71° Twaddell= S. G. 1.355.	
	NaOH.	кон.	NaOH.	кон.	NaOH.	кон.	NaOH.	кон.
·05	16:37	16.60	7:37	8.12	4.45	5.43	3.57	4.52
•1	32.74	33.21	14.74	16.24	8.90	10.87	7.15	9.04
•15	49.10	49.81	22.11	24.35	13.36	16.30	10.72	13.56
•2	65.47	66.42	29.48	32.47	17.81	21.73	14.30	18.08
•25	81.84	83.02	36.85	40.59	22.26	27.17	17.87	22.60
•3	98.21	99.63	44.22	48.71	26.71	32.60	21.44	27.12
•35	114.57	116.23	51.59	56.82	31.17	38.03	25.02	31.64
•4	130.94	132.84	58.96	64.94	35.62	43.47	28.59	36.16
•45	147:31	149.44	66.33	73.06	40.07	48.90	32.17	40.68
•5	163.68	166.05	73.70	81.18	44.52	54.33	35.74	45.20
.55	180.04	182.65	81.07	89.30	48.98	59.77	39.31	49.72
•6	196.41	199.26	88.44	97.41	53.43	65.20	42.89	54.24
·65	212.78	215.86	95.81	105.53	57.88	70.63	46.46	58.75
-7	229.15	232.47	103.18	113.65	62.33	76.07	50.04	63.27
•75	245 • 52	249.07	110.55	121.77	66.79	81.20	53.61	67.79
•8	261·88	265.67	117.92	129.88	71.24	86.94	57.18	72.31
·85	$278 \cdot 25$	282.28	125.29	138.00	75.69	92:37	60.76	76.88
.9	294.62	298.88	132.66	146.12	80.14	97:80	64.33	81.35
•95	310.99	315.49	140.03	154.24	84.60	103.24	67.91	85.87
1.0	327.35	332.09	147.41	162 36	89.05	108.67	71.48	90.38
2.0	654.71	664.19	294.81	324.71	178.10	217:34	142.96	180.78
3.0	982.06	996.28	442.22	487.07	267.14	326.01	214.44	271.18
	1309.42	1328.37	589.62	649.42	356.19	434.68	285.92	361.57
1	1636.77	1660.47	737.03	811.78	445.24	543.35	357.41	451.96
	1964.12	1992.56	884.43	974 14	534.29	652.01	428.89	542.35
	2291.48	2324.65	1031.84	1136.49	623.34	760.68	500.37	632.74
	2618.83	2656.74	1179.24	1298.85	712.38	869.35	571.85	732.14
	2946.19	2988.84	1326.65	1461.20	801.43	978.02	643.33	813.53
10.0	3273.54	3320.93	1474.05	1623.56	890.48	1086.69	714.81	903.92

Tab
Influence of Temperatures on the Speci

	1	,	,				219100100	, oj 1011	opor wow c	s on ne	Speci
		O C.	5° C.	10° C.	15° C.	20° C.	25° C.	80° C.	85° C.	40° C.	45° C.
1	Spec. Grav	1:367	1:364	1·362	1:360	1·357	1·355	1·353	1:350	1:348	1·34
2	Baumé	38:8	38:5	38·4	38:2	38·0	37·8	37·7	37:4	37:3	37·0
′3	Spec. Grav	1·357	1:354	1:352	1·350	1·347	1:345	1:343	1:340	1·337	1·33
. 4	Baumé	38·0	37:8	37:6	37·4	37·2	37:0	36:9	36:6	36·4	36·2
5	Spec. Grav	1·347	1:344	1:342	1:340	1:338	1:336	1·333	1·330	1·327	1:32
6	Baumé	37·2	36:9	36:8	36:6	36:5	36:3	36·1	35·8	35·6	35:4
7	Spec. Grav	1·338	1·335	1·332	1:330	1·328	1·325	1·323	1·320	1·317	1:31
8	Baumé	36·5	36·2	36·0	35:8	35·8	35·4	35·3	35·0	34·8	34:6
9	Spec. Grav	1·328	1·325	1·322	1:320	1:318	1·315	1·313	1·310	1·307	1:30
10	Baumé	35·7	35·4	35·2	35:0	34:8	34·6	34·4	34·2	33·9	33:7
11	Spec. Grav	1:318	1.315	1·313	1·310	1·308	1·305	1·303	1:300	1·297	1·29
12	Baumé	34:8	34.6	34·4	34·2	34·0	33·7	38·5		33·0	32·8
13	Spec. Grav	1:308	1:305	1·303	1·300	1·297	1·294	1·292	1·289	1·287	1·28
14	Baumé		33:7	33·5	33·3	33·0	32·8	32·6	32·3	32·2	31·9
15	Spec. Grav	1·298	1·295	1·293	1·290	1·287	1·284	1·282	1·279	1·277	1·27
16	Baumé	33·1	32·8	32·7	32·4	32·2	31·9	31·7	31·5	31·3	31·0
17	Spec. Grav	1·288	1·285	1·283	1·280	1·277	1·274	1·272	1.269	1·267	1:26
18	Baumé	32·3	32·0	31·8	31·5	31·3	31·0	30·8		30·4	30:1
19	Spec. Grav	1·278	1·275	1·273	1·270	1·267	1·265	1.262	1·260	1.258	1·25
20	Baumé	31·4	31·1	30·9	30·6	30·4	30·2	29.9	29·7	29.5	29·3
21	Spec. Grav	1·268	1·265	1·263	1·260	1·257	1·255	1·252	1:250	1.248	1·24
22	Baumé	30·5	30·2	30·0	29·7	29·5	29·3	29·0	28:8	28.6	28·4
23	Spec. Grav	1·257	1·255	1·252	1·250	1·247	1·245	1·242	1·240	1·238	1·23
24	Baumé	29·5	29·3	29·0	28·8	28·5	28·4	28·1	27·9	27·7	27·4
25	Spec. Grav	1·247	1·245	1·242	1·240	1:237	1·235	1·232	1·230	1·228	1·22
26	Baumé	28·5	28·4	28·1	27·9	27:6	27·4	27·1	26·9	26·7	26·5
27	Spec. Grav	1·237	1·235	1·232	1·230	1·227	1·224	1·222	1:220	1·218	1.21
28	Baumé	27·6	27·4	27·1	26·9	26·6	26·4	26·2	26:0	25·8	25.5
29	Spec. Grav	1·227	1·225	1·222	1·220	1·217	1·214	1·212	1·210	1·208	1.24
30	Baumé	26·6	26·5	26·2	26·0	25·7	25·4	25·2	25·0	24·8	24.5
31	Spec. Grav	1·217	1·215	1·212	1·210	1·207	1·204	1·203	1·200	1·198	1·19
32	Baumé	25·7	25·5	25·2	25·0	24·7	24·4	24·3	24·0	23·8	23·5
33	Spec. Grav	1·207	1·205	1·202	1·200	1·197	1·195	1·193	1·190	1·188	1.1
34	Baumé	24·7	24·5	24·2	24·0	23·7	23·5	23·3	23·0	22·8	
35	Spec. Grav	1·197	1·195	1·192	1·190	1·187	1·185	1·183	1·180	1·178	1.1
36	Baumé	23·7	23·5	23·2	23·0	22·7	22·5	22·3	22·0	21·8	
37	Spec. Grav	1·187	1·185	1·182	1·180	1·177	1·175	1·173	1·170	1·168	1·1
38	Baumé	22·7	22·5	22·2	22·0	21·7	21·4	21·2	20·9	20·7	20·1
39	Spec. Grav	1·176	1·174	1·172	1·170	1·167	1·165	1·163	1·161	1·158	1:1
40	Baumé	21·6	21·3	21·1	20·9	20·5	20·3	20·1	19·9	19·6	19:4
41	Spec. Grav	1·166	1·164	1·162	1·160	1·157	1·155	1·153	1·151	1·148	19
42	Baumé	20·4	20·2	20·0	19·8	19·5	19·3	19·1	18·9	18·6	
43	Spec. Grav	1·156	1·154	1·152	1·150	1·148	1·146	1·144	1·142	1·140	174
44	Baumé	19·4	19·2	19·0	18·8	18·6	18·4	18·2	18·0	17·8	174

No. 68 Fravities of Solutions of Caustic Soda

50° C.	55° C.	60° C.	65° C.	70° C.	75° C.	80° C.	85° C.	90° C.	95° C.	100° C.	
1:342	1·339	1·336	1·333	1·331	1·328	1·326	1·323	1·321	1:318	1·316	1 2
36:8	36·5	36·3	36·1	35·9	35·7	35·5	35·3	35·1	34:8	34·7	
1·332	1:330	1·327	1·324	1·322	1·319	1·316	1·314	1·311	1·308	1:306	3
36·0	35:8	35·6	35·3	35·2	34·9	34·7	34·5	34·3	34·0	33:8	4
1·322	1·320	1·317	1·314	1·312	1·309	1:306	1:304	1:301	1·298	1:296	5
35·2	35·0	34·8	34·5	34·3	34·1	33:8	33:6	33:4	33·1	32:9	6
1·312	1·310	1·307	1·304	1·302	1·299	1·296	1·294	1·291	1·288	1·286	7
34·3	34·2	33·9	33·6	33·5	33·2	32·9	32·8	32·5	32·3	32·1	8
1:3 02	1·300	1·297	1·294	1:292	1·289	1·286	1.283	1·280	1·277	1·274	9
33:5	33·3	33·0	32·8	32:6	32·3	32·1	31.8	31·5	31·3	31·0	10
1·292	1·289	1·286	1.284	1:281	1·278	1·275	1·272	1·269	1·266	1·263	11
32·6	32·3	32·1	31.9	31:6	31·4	31·1	30·8	30·5	30·3	30·0	12
1·282	1·279	1·276	1·274	1·271	1·268	1·265	1 262	1·259	1·245	1·253	13
31·7	31·5	31·2	31·0	30·7	30·5	30·2	29·9	29·6	29·4	29·1	14
1·272	1·269	1·266	1·264	1·261	1·258	1·255	1·252	1·249	1·256	1·242	15
30·8	30·5	30·3	30·1	29·8	29·5	29·3	29·0	28·7	28·4	28·1	16
1·262	1·259	1·256	1·254	1·251	1:248	1:245	1·242	1·239	1·235	1·232	17
29·9	29·6	29·4	29·2	28·9	28:6	28:4	28·1	27·8	27·4	27·1	18
1·252	1.250	1:247	1·245	1·242	1·239	1·236	1·233	1·231	1·228	1·225	19
29·0	28.8	28:5	28·4	28·1	27·8	27·5	27·2	27·0	26·7	26·5	20
1.242	1·240	1·237	1·235	1·232	1·229	1·226	1·223	1·221	1·218	1·215	21
28.1	27·9	27·6	27·4	27·1	26·8	26·5	26·3	26·1	25·8	25·5	22
$\substack{1.233\\27.2}$	1·231	1·228	1·226	1·223	1·220	1·218	1·215	1·213	1·209	1·207	23
	27·0	26·7	26·5	26·3	26·0	25·8	25·5	25·3	24·9	24·7	24
$1.223 \\ 26.3$	1·221	1·218	1·216	1·213	1·210	1·208	1·205	1·203	1·200	1·197	25
	26·1	25·8	25·6	25·3	25·0	24·8	24·5	24·3	24·0	23·7	26
$\substack{1.212\\25.2}$	1·210	1·208	1·205	1·202	1·200	1·198	1·195	1·192	1·190	1·187	27
	25·0	24·8	24·5	24·2	24·0	23·8	23·5	23·2	23·0	22·7	28
$1.202 \\ 24.2$	1·200	1·198	1·195	1·192	1·190	1·188	1·185	1·182	1·180	1·177	29
	24·0	23·8	23·5	23·2	23·0	22·8	22·5	22·2	22·0	21·7	30
$1.192 \\ 23.2$	1·191	1·189 ·	1·186	1·184	1·181	1·179	1·176	1·173	1·171	1·168	31
	23·1	22·9	22·6	22·4	22·1	21·9	21·6	21·2	21·0	20·7	32
$1.184 \\ 22.4$	1·182	1·180	1·177	1·175	1·172	1·169	1·166	1·163	1·161	1·158	33
	22·2	22·0	21·7	21·4	21·1	20·8	20·4	20·1	19·9	19·6	34
$1.174 \\ 21.3$	1·172	1·169	1·166	1·164	1·161	1·158	1·155	1·153	1·150	1·147	35
	21·1	20·8	20·4	20·2	19·9	19·6	19·3	19·1	18·8	18·5	36
$1.164 \\ 20.2$	1·162	1·159	1·156	1·153	1·151	1·148	1·145	1·143	1·140	1·137	37
	20·0	19·7	19·4	19·1	18·9	18·6	18·3	18·1	17·8	17·4	38
1·154	1·152	1·149	1·146	1·143	1·140	1·138	1·135	1·132	1·130	1·127	39
19·2	19·0	18·7	18·4	18·1	17·8	17·5	17·1	16·8	16·5	16·2	40
1·144	1·142	1·139	1·136	1·133	1·130	1·128	1·125	1·122	1·120	1·117	41
18·2	18·0	17·6	17·3	16·9	16·5	16·3	16·0	15·7	15·4	15·1	42
1·135	1·132	1·130	1·127	1·124	1·121	1·118	1·116	1·113	1·110	1·107	43
17·1	16·8	16·5	16·2	15·9	15·6	15·2	15·0	14·6	14·2	13·9	44

TABLE No. 68-

	_										
		0° C.	5° C.	10° C.	15° C.	20° C.	25° C.	80° C.	85° C.	40° C.	45° C.
Spec. Grav.	:	1·146	1·144	1·142	1·140	1·138	1·136	1:134	1·132	1·130	1·127
Baumé .		18·4	18·2	18·0	17·8	17·5	17·3	17:0	16·8	16·5	16·2
Spec. Grav.		1·136	1·134	1·132	1·130	1·128	1·126	1·124	1·122	1·120	1·118
Baumé .		17·3	17·0	16·8	16·5	16·3	16·1	15·9	15·7	15·5	15·2
Spec. Grav.		1·126	1·124	1·122	1·120	1·118	1·116	1·114	1·112	1·110	1·108
Baumé .		16·1	15·9	15·7	15·4	15·2	15·0	14·8	14·5	14·3	14·0
Spec. Grav.		1·115	1·113	1·112	1·110	1·108	1·106	1·104	1·102	1·100	1.099
Baumé .		14·9	14·6	14·5	14·3	14·0	13·8	13·5	13·2	13·0	12.9
Spec. Grav.	:	1·105	1·103	1·102	1·100	1.098	1.096	1·095	1.093	1·092	1:090
Baumé .		13·6	13·4	13·3	13·0	12.8	12.6	12·4	12.2	12·1	11:9
Spec. Grav.	:	1·094	1·093	1:091	1·090	1.088	1·087	1·086	1.084	1.082	1.080
Baumé .		12·3	12·2	12:0	11·9	11.6	11·5	11·4	11.1	10.9	10.6
Spec. Grav.		1·084	1.083	1.081	1.080	1.078	1·077	1·076	1·074	1:072	1·070
Baumé .		11·1	11.0	10.8	10.6	10.4	10·3	10·1	9·9	9:6	9·4
Spec. Grav.		1·074	1·073	1.071	1·070	1.068	1·067	1.066	1·064	1.062	1.060
Baumé .		9·9	9·8	9.5	9·4	9.1	9·0	8.9	8·6	8.3	8.0
Spec. Grav.		1.064	1.063	1.061	1·060	1.058	1·057	1·056	1·054	1.052	1·050
Baumé .		8.6	8.4	8.2	8·0	7.8	7·6	7·5	7·3	7.0	6·7
Spec. Grav.		1.054	1·053	1.051	1.050	1.048	1·047	1·046	1.044	1·042	1·040
Baumé .		7.3	7·1	6.9	6.7	6.4	6·3	6·2	5.9	5·6	5·4
Spec. Grav.		1·044	1·043	1.041	1·040	1·038	1·037	1·036	1.034	1·032	1.030
Baumé .		5·9	5·8	5.5	5·4	5·1	5·0	4·9	4.6	4·4	4.1
Spec. Grav.		1:034	1.033	1.031	1·030	1·028	1·027	1·026	1·024	1·022	1·020
Baumé .		4:6	4.5	4.3	4·1	3·9	3·7	3·5	3·3	3·0	2·8
Spec. Grav.	•	1·024	1·023	1.021	1·020	1.018	1·017	1.016	1.014	1·012	1·010
Baumé .		3·3	3·2	2.9	2·8	2.5	2·4	2.3	2.0	1·7	1·4
Spec. Grav. Baumé .	•	1.014 2.0	1·013 1·9	1.011 1.6	1·010 1·4	1·008 1·1	1.007 1.0	1.006 0.9	1.004 0.6	1.002 0.3	1.000
	Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé . Spec. Grav. Baumé .	Baumé	Spec. Grav	Spec. Grav 1.146 1.144 Baumé . 18.4 18.2 Spec. Grav 1.136 1.134 Baumé . 17.3 17.0 Spec. Grav 1.126 1.124 Baumé . 16.1 15.9 Spec. Grav 1.115 1.113 Baumé . 14.9 14.6 Spec. Grav 1.105 1.103 Baumé . 18.6 18.4 Spec. Grav 1.094 1.093 Baumé . 12.3 12.2 Spec. Grav 1.084 1.083 Baumé . 11.1 11.0 Spec. Grav 1.074 1.073 Baumé . 9.9 9.8 Spec. Grav 1.064 1.063 Baumé . 8.6 8.4 Spec. Grav 1.054 1.053 Baumé . 8.6 8.4 Spec. Grav 1.054 1.053 Baumé . 5.9 5.8 Spec. Grav 1.044 1.043 Baumé . 5.9 5.8 Spec. Grav 1.034 1.033 Baumé . 4.6 Spec. Grav 1.034 1.033 Baumé . 4.6 Spec. Grav 1.024 1.023 Baumé . 3.3 3.2 Spec. Grav 1.014 1.013	Spec. Grav 1.146 1.144 1.142 Baumé . 18.4 18.2 18.0 Spec. Grav 1.136 1.134 1.132 Baumé . 17.3 17.0 16.8 Spec. Grav 1.126 1.124 1.122 Baumé . 16.1 15.9 15.7 Spec. Grav 1.115 1.113 1.112 Baumé . 14.9 14.6 14.5 Spec. Grav 1.105 1.103 1.102 Baumé . 18.6 18.4 13.3 Spec. Grav 1.094 1.093 1.091 Baumé . 12.3 12.2 12.0 Spec. Grav 1.084 1.083 1.081 Baumé . 11.1 11.0 10.8 Spec. Grav 1.074 1.073 1.071 Baumé . 9.9 9.8 9.5 Spec. Grav 1.064 1.063 1.061 Baumé . 8.6 8.4 8.2 Spec. Grav 1.054 1.053 1.051 Baumé . 7.3 7.1 6.9 Spec. Grav 1.044 1.043 1.041 Baumé . 5.9 58 Spec. Grav 1.034 1.033 1.031 Baumé . 5.9 58 Spec. Grav 1.034 1.033 1.031 Baumé . 4.6 4.5 Spec. Grav 1.024 1.023 1.021 Baumé . 4.6 Spec. Grav 1.024 1.023 1.031 Baumé . 4.6 Spec. Grav 1.024 1.023 1.021 Baumé . 3.3 3.2 2.9 Spec. Grav 1.014 1.013 1.011	Spec. Grav. 1·146 1·144 1·142 1·140 Baumé . 18·4 18·2 18·0 17·8 Spec. Grav. 1·136 1·134 1·132 1·130 Baumé 17·3 17·0 16·8 16·5 Spec. Grav. 1·126 1·124 1·122 1·120 Baumé . 16·1 15·9 15·7 15·4 Spec. Grav. 1·115 1·113 1·112 1·110 Baumé . 14·9 14·6 14·5 14·3 Spec. Grav. 1·105 1·103 1·102 1·100 Baumé . 18·6 13·4 13·3 13·0 Spec. Grav. 1·094 1·093 1·091 1·090 Baumé . 12·3 12·2 12·0 11·9 Spec. Grav. 1·084 1·083 1·081 1·080 Baumé 1·074 1·073 1·071 1·070 Baumé 9·9	Spec. Grav. 1:146 1:144 1:142 1:140 1:138 Baumé . 18*4 18*2 18*0 17*8 17*5 Spec. Grav. . 1:136 1:134 1:132 1:130 1:128 Baumé . 17:3 17:0 16*8 16:5 16:3 1:128 Spec. Grav. . 1:126 1:124 1:122 1:120 1:118 Baumé . 16:1 15*9 15*7 15*4 15*2 Spec. Grav. . 1:115 1:113 1:112 1:110 1:108 Baumé . 14*9 14*6 14*5 14*3 14*0 Spec. Grav. 1:105 1:103 1:102 1:100 1:098 Baumé . 13*6 13*4 13*3 13*0 12*8 Spec. Grav. 1:094 1:093 1:091 1:090 1:088 Baumé . 1:03 1:22 12:0 11	Spec. Grav. 1.146 1.144 1.142 1.140 1.138 1.136 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.128 1.126 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138	Spec. Grav. 1:146 1:144 1:142 1:140 1:138 1:136 1:134 Baumé . 18:4 18:2 18:0 17:8 17:5 17:3 17:0 Spec. Grav. . 1:136 1:134 1:132 1:130 1:128 1:126 1:124 Baumé . 17:3 17:0 16:8 16:5 16:3 16:1 15:9 Spec. Grav. . 1:126 1:124 1:122 1:120 1:118 1:116 1:114 Baumé . 16:1 15:9 15:7 15:4 15:2 15:0 14:8 Spec. Grav. 1:115 1:113 1:112 1:110 1:108 1:106 1:104 Baumé . 14:9 14:6 14:5 14:3 14:0 13:8 13:5 Spec. Grav. 1:105 1:03 1:02 1:100 1:098 1:096 1:095 Baumé . 13:6 13:4	Spec. Grav. 1.146 1.144 1.142 1.140 1.138 1.136 1.134 1.132 1.130 1.128 1.126 1.124 1.122 1.130 1.128 1.126 1.124 1.122 1.130 1.128 1.126 1.124 1.122 1.130 1.138 1.136 1.134 1.132 1.130 1.128 1.126 1.124 1.122 1.120 1.118 1.116 1.114 1.112 1.120 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.134 1.132 1.130 1.138 1.136 1.148 1.145 1.138 1.136 1.148 1.145 1.138 1.136 1.149 1.146 1.144 1.138 1.136 1.144 1.138 1.130 1.138 1.136 1.138 1.136 1.138 1.130 1.138 1.136 1.138 1.136 1.138 1.130 1.138 1.136 1.138 1.136 1.138 1.130 1.138 1.138 1.136 1.138 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.136 1.138 1.138 1.136 1.138 1.138 1.136 1.138 1.138 1.136 1.138 1.136 1.138 1.138 1.138 1.138 1.138 1.138 1.138 1.136 1.138	Spec. Grav. 1.146

mtinued

50° C.	55° C.	60° C.	65° C.	70° C.	75° C.	80° C.	85° C.	90° C.	95° C.	100° C.	
1·125	1·122	1·120	1·117	1·114	1·111	1·108	1·106	1·103	1·100	1·097	1
16·0	15·7	15·4	15·1	14·8	14·4	14·0	13·8	13·4	13·0	12·7	2
1·116	1·113	1·110	1·107	1·104	1·101	1·099	1.096	1·093	1.090	1.087	3
15·0	14·6	14·3	13·9	13·5	13·1	12·9	12.6	12·2	11.9	11.5	4
1·106	1·103	1·100	1.097	1.094	1.092	1.089	1.086	1.083	1.080	1.077	5
13·8	13·4	13·0	12.7	12.3	12.1	11.8	11.4	11.0	10.6	10.3	6
1·097	1.094	1.091 ·	1.089	1.086	1.083	1.080	1.077	1·074	1·071	1.068	7 8
12·7	12.3	12.0	11.8	11.4	11.0	10.6	10.3	9·9	9·5	9.1	
1·087	1·084	1.082	1.079	1.076	1.073	1.070	1.067	1·064	1.061	1.058	9
11·5	11·1	10.9	10.5	10.1	9.8	9.4	9.0	8·6	8.2	7.8	10
1·078	1.075	1.073	1·070	1.067	1.064	1.061	1.058	1·056	1.052	1·048	11
10·4	10.0	9.8	9·4	9.0	8.6	8.2	7.8	7·5	7.0	6·4	12
1·068	1.066	1.063	1.060	1.057	1.054	1.051	1.048	1·046	1.043	1.040	13
9·1	8.9	8.4	8.0	7.6	7.3	6.9	6.4	6·2	5.8	5.4	14
1·058	1.056	1·053	1.050	1.047	1.044	1.042	1.039	1·036	1.033	1.030	15
7·8	7.5	7·1	6.7	6.3	5.9	5.6	5.2	4·9	4.5	4.0	16
1·048	1.046	1.043	1.040	1.037	1·034	1.032	1.029	1·026	1·023	1.020	17
6·4	6.2	5.8	5.4	5.0	4·5	4.4	4.0	3·6	3·2	2.8	18
1·038	1.036	1.033	1.030	1.027	1.024	1.021	1.019	1.016	1·013	1·010	19
5·1	4.9	4.5	4.1	3.7	3.3	2.9	2.6	2.3	1·9	1·4	20
1.028	1.026	1·023	1.020	1·017	1·014	1:011	1.009	1.006	1.003	1.000	21
3.9	3.6	3·1	2.8	2·4	2·0	1:6	1.3	0.9	0.4		22
1.018 2.5	1.016 2.2	1·013 1·9	1·010 1·4	1:007 1:0	1:004 0:6	1·001 0·1	0.999	0.996	0.993	0.990	23 24
1.008 1.1	1.006 0.9	1.003 0.4	1.000	0.997	0.994	0.991	0.989	0.986	0.983	0.980	25 26
0.998	0.996	0.993	0.990	0.987	0.984	0.981	0.979	0.976	0.973	0.970	27 28

Table No. 70

Caustic Alkali Solutions required to saponify Fats of Mean Molecular Weight 670 (Cocoanut Oil, Palmkernel Oil)

				Gallons of	Solution.				
Weight of Fat in Tons.	20° Twaddell = 8. G. 1·1.			40° Twaddell = S. G. 1·2.		ddell= 1.8.	71° Twaddell= 8. G. 1.855.		
	NaOH.	кон.	NaOH.	кон.	NaOH.	кон.	NaOH.	кон.	
•05	21.01	21.31	9.46	10.42	5.72	6.97	4.59	5.80	
•1	42.02	42.63	18.92	20.84	11.43	13.95	9.18	11.60	
.15	63.03	63.94	28.38	31.26	17.15	20.92	13.76	17:40	
•2	84.04	85.25	37.84	41.68	22.86	27.90	18.35	23.21	
.25	105.05	106.57	47:30	52.10	28.58	34.87	22.94	29.01	
•3	126.06	127.88	56.76	62.52	34.29	41.85	27.53	34.81	
•35	147.07	149.19	66.22	72.94	40.01	48.82	32.11	40.61	
•4	168.07	170.51	75.68	83.36	45.72	55.79	36.70	46.41	
•45	189.08	191.82	85.14	93.78	51.44	62.77	41.29	52.21	
•5	210.09	213.13	94.60	104.20	57.15	69.74	45.88	58.01	
.55	231.10	234.45	104.06	114.62	62.87	76.72	50.46	63.81	
•6	252.11	255.76	113.52	125.04	68.58	83.69	55.05	69.62	
.65	273.12	277.07	122.98	135.46	74.30	90.67	59.64	75.42	
•7	294.13	298:39	132.44	145.88	80.01	97.64	64.23	81.22	
.75	315.14	319.70	141.91	156:30	85.73	104.61	68.81	87.02	
•8	336.15	341.01	151.37	166.72	91.44	111.59	73.40	92.82	
•85	357.16	362.33	160.83	177 · 14	97.16	118.56	77.99	98.62	
•9	378.17	383.64	170.29	187.56	102.87	125.54	82.58	104.42	
•95	399.18	404.95	179.75	197.98	108.59	132.51	87.16	110.22	
1.0	420.19	426.27	189.21	208.40	114:30	139.49	91.75	116.03	
2.0	840.37	852.54	378.41	416.80	228.60	278.97	183.50	232.05	
3.0	1260.56	1278.80	567.62	625.19	342.90	418.46	275.26	348.08	
4.0	1680.74	1705.07	756.83	833.59	457.20	557.94	367.01	464.10	
5.0	2100.93	2131.34	946.04	1041.99	571.50	697 43	458.76	580.13	
6.0	2521.12	2557.61	1135.24	1250:39	685.80	836.92	550.51	696.16	
7.0	2941.30	2983.88	1324.45	1458.79	800.10	976.40	642.26	812.18	
8.0	3361.49	3410.14	1513.66	1667.18	914.40	1115.89	734.02	928.21	
9.0	3781.67	3836.41	1702.86	1875.58	1028.70	1255.37	825.77	1044.23	
10.0	4201.86	4262.68	1892.07	2083.98	1143.00	1394.86	917.52	1160.26	

TABLE No. 71.—German and French Alkalimetrical Degrees

Real Soda.	German degrees.	French degrees.	Real Soda.	German degrees.	French degrees.
Na ₂ O. Per cent.	Na ₂ CO ₃ . Per cent.		Na ₂ O. Per cent.	Na ₂ CO ₃ . Per cent.	
0.5	0.85	0.79	27	46.17	42.67
1	1.81	1.58	27.5	47 · 02	43.46
1.2	2.56	2.37	28	47 · 88	44.25
2	3.42	3.16	28.5	48.73	45.04
2.5	4.27	3.95	29	49.59	45.83
3	5.13	4.74	29.5	50.44	46.62
3.2	5.98	5.23	30	51· 29	47.42
4	6.84	6.32	30.5	52.14	48.21
4.5	7.69	7.11	31	53.00	49.00
5	8.55	7:90	31.5	53.85	49.79
5.2	9.40	8 ·6 9	32	54·71	50.88
6	10.26	9.48	32.5	55.56	51.37
6.5	11.11	10.27	33	56.42	52·16
7	11.97	11.06	33.5	57·27	52.95
7.5	12.82	11.85	34	58.13	53.74
8	13.68	12.64	34.5	58 ·98	54.53
8.2	14.53	13.43	35	59.84	55.32
9	15:39	14.22	35.5	60.69	56.11
9.5	16:24	15.01	36	61.55	56.90
10	17:10	15.81	36.2	62.40	57.69
10.5	17:95	16.60	37	63 · 26	58.48
11	18.81	17:39	37.5	64.11	59.27
11.5	19.66	18:18	38	64.97	60.06
12	20.52	18.97	38.5	65.82	60.85
12.5	21:37	19.76	39	66.68	61.64
13	22.23	21.55	39.5	67 · 53	62.43
13.5	23.08	21:34	40	68:39	63.22
14	23 · 94	22.13	40.5	69:24	64.01
14.5	24.79	22.92	41	70.10	64.81
15	25.65	23.71	41.5	70.95	65.60
15.5	26.50	24.50	42	71.81	66.39
16	27:36	25.29	42.5	72.66	67.18
16.5	28.21	26 ·08	43	73.52	67.97
17	29.07	26.87	43.5	74 37	68.76
17.5	29.92	27.66	44	75·23	69.55
18	30.78	28.45	44.5	76.08	70.34
18.5	31.63	29.24	45	76.94	71.13
19	32.49	30.03	45.5	77.80	71.92
19.5	33.34	30.82	46	78.66	72.71
20	34.20	31.61	46.5	79.51	73.50
20.5	35.05	32.40	47	80.37	74.29
21	35.91	33.19	47.5	75.08	75.08
21.5	36.76	33.58	48	82.07	75.87
22	37.62	34.77	48.5	82.93	76.66
22.5	38.47	35.56	49	83.78	77:45
23	39.33	36.35	49.5	84.64	78.24
23.5	40.18	37.14	50	85.48	79.03
24	41.04	37.93	50.5	86:34	79.82
24.5	41.89	38.72	51	87.19	80.61
25	42.75	39.51	51.5	88.05	81.40
25.5	43.60	40.30	52	88.90	82.19
26	44.46	41.09	52.5	89.76	82.98
26.5	45.31	41.88	53	90.61	83.77

TABLE No. 71—continued.—German and French Alkalimetrical Degrees

Real Soda.	German degrees.	French degrees.	Real Soda.	German degrees.	French degrees.
Na ₂ O.	Na ₂ CO ₃ .		Na ₂ O.	Na ₂ CO ₃ .	
53.5	91.47	84.56	66	112.85	104.32
54	92.32	85.35	66.5	113.70	105.11
54.5	93.18	86.14	67	114.56	105.90
55	94.03	86.93	67.5	115.41	106.69
55.5	94.89	87.72	68	116.27	107:48
56	95.74	88.52	68.5	117.12	108.27
56.5	96.60	89:31	69	117.98	109.06
57	97.45	90.10	69.5	118.83	109.85
57.5	98.31	90.88	70	119.69	110.64
58	99.16	91.68	70.5	120.53	111.43
58.5	100.02	92.47	71	121.39	112.23
59	100.87	93.26	71.5	$122 \cdot 24$	113.02
59.5	101.73	94.05	72	123.10	113.81
60	102.58	94.84	72.5	123.95	114.60
60.5	103.44	95.63	73	124.81	115.39
61	104:30	96.42	73.5	125.66	116.18
61.5	105.15	97.21	74	126.52	116.97
62	106.01	98.00	74.5	127:37	117:76
62.5	106.86	98.79	.75	128.23	118.55
63	107.72	99.58	75.5	129.08	119:34
63.5	108.57	100.37	76	129.94	120.13
64	109.43	101.16	76.5	130.79	120.92
64.5	110.28	101.95	77	131.65	121.71
65	111.14	102.74	77.5	132.50	122.50
65.5	111.99	103.53	1		

TABLE No. 72
Specific Gravities of Solutions of Solution Carbonate at 15° C.

_	Percentage	by Weight.		Percentage by Weight.			
Twaddell.	Na ₂ O.	Na ₂ CO ₃ .	Twaddell.	Na ₂ O.	Na ₂ CO ₃ .		
1	0.28	0.47	16	4.42	7.57		
2	0.56	0.95	17	4.70	8.04		
2 3	0.84	1.42	18	4.97	8.51		
4	1.11	1.90	19	5.24	8.97		
4 5	1:39	2.38	20	5.52	9.43		
6	1.67	2.85	21	5.79	9.90		
7	1.95	3.33	22	6.06	10.37		
8 9	2.22	3.80	23	6.33	10.83		
9	2.50	4.28	24	6.61	11.30		
10	2.78	4.76	25	6.88	11.76		
11	3.06	5.23	26	7.15	12.23		
12	3.34	5.71	27	7.42	12.70		
13	3.61	6.17	28	7.70	13.16		
14	3.88	6.64	29	7.97	13.63		
15	4.16	7.10 .	30	8.24	14.09		

Table No. 73.—Specific Gravities of Solutions of Potassium Carbonate at 15° C. (Gerlach)

			<i>at</i> 10 °C.	(Ger			
Twaddell.	Per cent by Weight. K ₂ CO ₃ .	Kilogrm. per cubic meter. K ₂ CO ₃ .	Lbs. per cubic foot. K ₂ CO ₃ .	Twaddell.	Per cent by Weight. K ₂ CO ₃ .	Kilogrm. per cubic meter. K ₂ CO ₃ .	Lbs. per cubic foot. K ₂ CO ₃ .
1	.54	5.4	0.34	58	29.02	374.3	23:34
2	1.08	10.9	0.68	59	29.46	381.5	23.79
3	1.62	16.4	1.02	60	29.91	388.8	24.24
4	2.16	22.0	1.37	61	30:34	395.9	24.68
5	2.70	27.7	1.73	62	30.77	403.1	25.13
6	3.24	33.4	2.08	63	31.21	410.3	25.58
7	3.78	39.1	2.43	64	31.64	417.6	26.04
8	4.32	44.9	2.80	65	32.08	425.0	26.50
9	4.86	50.8	3.17	66	32.51	432.4	26.96
10	5.40	56.7	3.53	- 67	32.94	439.8	27.42
11	5.94	62.7	3.90	68	33.38	447.3	27.89
12	6.48	68.7	4.28	69	33.81	454.8	28.36
13	7.02	74.8	4.66	70	34.25	462.4	28.83
14	7.56	80.9	5.04	71	34.67	469.9	29:30
15	8.10	87.1	5.43	72	35.10	477.4	29.77
16	8.64	93.3	5.82	73	35.52	484.9	30.23
17	9.18	99.6	6.21	74	35.95	492.5	30.71
18	9.72	105.9	6.60	75	36:37	500.1	31.18
19	10.26	108.4	6.21	76	36.80	507.8	31.66
20	10.80	118.8	7.41	77	37.22	515.6	32.15
21	11.31	125.0	7.79	78	37.65	523.3	32.63
22	11.82	131.2	8.18	79	38.07	531.7	33.11
23	12.33	137.5	8.57	80	38.20	539.0	33.60
24	12.84	143.8	8.97	81	38.91	546.7	34.09
25	13.35	150.2	9:37	82	39.32	554.4	34.57
26	13.86	156.6	9.76	83	39.73	562.2	35.05
27	14.37	163.1	10.17	84	40.14	570.0	35.54
28	14.88	169.6	10.57	85	40.55	577.8	36.02
29	15.39	176.2	10.99	86	40.96	585.7	36.21
30	15.90	182.8	11.40	87	41.37	593.6	37:01
31	16:38	189.2	11.80	88	41.78	601.6	37.51
32	16.86	195.6	12.20	89	42.19	609.6	38.01
33	17:34	202.0	12.59	90	42.60	617.7	38.51
34	17.82	208.5	13:00	91	43.00	625.6	39.01
35 36	18·30 18·78	215.0	13.40	92	43.40	633.6	39.51
37	19.26	221·6 228·2	13·82 14·23	93	43.80	641.6	40.01
38	19.74	234.9	14.65	94	44.20	649.7	40.51
39	20.22	241.7	15.07	95 96	44·60 45·00	657·8 666·0	41.01
40	20.70	241 7	15.49	96	45.40	674.2	41·52 42·03
41	21.17	255.2	15.91	98	45.80	682.4	42.55
42	21.65	262.0	16.33	99	46.50	690.7	43.06
43	22.12	268.8	16.76	100	46.60	699.0	43.58
44	22.60	275.7	17.19	101	46.98	707.1	44.09
45	23.07	282.6	17.62	102	47:37	715.3	44.61
46	23.55	289.6	18.05	103	47:35	723.5	45.11
47	24.02	296.7	18.50	104	48.14	731.7	45.62
48	24.50	303.8	18.94	105	48.52	740.0	,46.14
. 49	24.97	310.9	19.38	106	48.91	748.3	46.66
50	25.45	318.1	19.83	107	49.29	756.7	47.18
51	25.89	325.0	20.26	108	49.68	765.1	47.70
52	26:34	331.9	20.70	109	50.06	773.5	48.22
53	26.78	338.8	21.12	110	50.45	782.0	48.76
54	27.23	345.8	21.56	111	50.83	790.5	49.29
55	27.68	352.8	22.00	112	51.22	799.0	49.82
56	28.12	359.9	22.44	113	51.61	807.7	50.36
57	28.57	367.1	22.89	114	52.00	816.4	50.90
				1	ĺ		1

Table No. 74

Determination of Resin in Soap by Twitchell's Method (Lewkowitsch)

A. Volumetric Analysis

Mixed Fatty		Resin Acids.				
and Resin Acids.	Theory.	Experiment.				
No.	Per cent.	Per cent.				
1	9.79	9.98, 9.34, 9.79, 9.91.				
2	19.69	23.97, 24.55, 22.93, 23.28, 23.98, 24.08.				
3	21.45	24.96, 24.78, 23.63.				
4	24.66	24.89, 25.15, 25.06, 24.23.				
4 5	30.31	29.69, 30.12, 28.18, 29.78.				
6	39.81	40.24, 40.37, 41.44, 42.13, 41.8, 40.37, 42.18, 40.55, 40.07, 40.05, 43.69, 41.12, 41.81, 40.77, 44.82.				
7	45.05	45.76, 46.50, 49.61, 47.66, 46.45, 47.84, 45.34, 44.24, 44.48, 44.39.				

B. Gravimetric Analysis

Mixed Fatty	Resin Acids.					
and Resin Acids.	Theory.	Experiment.				
No.	Per cent.	Per cent.				
1	9.79	9.38, 9.97.				
2	19.69	20.46, 20.55, 19.96, 19.99, 19.44, 19.33.				
3	21.45	19·25, 18·27, 19·37, 17·83, 19·54, 18·61, 18·57, 19·16.				
4	24.66	20.97, 16.65, 21.76.				
5	30.31	25.76, 25.06, 23.66, 26.10.				
6	39.81	35.97, 38.86, 36.44, 36.14, 35.42, 35.86, 32.51, 36.29.				
7	45.05	37.58, 37.23, 37.29, 36.97, 35.32, 40.06, 36.8.				

¹ Emulsion.

8. GLYCERIN

TABLE No. 75.—Residue and Ash of Distilled Glycerines

No.	Residue at 160° C.	Ash.	Organic Residue.		
	Per cent.	Per cent.	Per cent.		
1	0.03033	0.00603	0.0243	Chemically pure	glycerin, B.P.
2	0.0276	0.00300	0.0246	,,,	,,
3	0.0337	0.005	0.0327	, , , , , , , , , , , , , , , , , , ,	"
4	0.0498	0.0138	0.0360	,,	,,
4 5	0.0452	0.0081	0.0371	,,	"
6	0.0509	0.0066	0.0443	,,	",
7	0.0656	0.0139	0.0517	,,	".
8	0.0748	0.0140	0.0738	Commercial dou	ıble distilled.
9	0.0905	0.0154	0.0751		,,
10	0.1047	0.0190	0.0857	",	"
11	0.1236	0.0305	0.0931		**
12	0.1621	0.0183	0.1438	,,	"
13	0.8060	0.2090	0.5970	Commercial dis	tilled glycerin.

TABLE No. 76.—Specific Gravities of Aqueous Solutions of Glycerin

	Lenz.	STROHMER.	GERI	ACH.	Nicol.
Glycerol. Per cent.	Spec. Grav. at 12°-14° C. Water at	Spec. Grav. at 17.5° C. Water at	Spec. Grav. at 15° C. Water at	Spec. Grav. at 20° C. Water at	Spec. Grav. at 20° C. Water at
	12° C. =1.	17.5 C. = 1.	15° C. = 1.	20° C. = 1.	20° C. = 1.
100	1.2691	1.262	1.2653	1.2620	1.26348
99	1.2664	1.259	1.2628	1.2594	1.26091
98	1.2637	1.257	1.2602	1.2568	1.25832
97	1.2610	1.254	1.2577	1.2542	1.25572
96 95	1.2584	1.252	1.2552	1.2516	1.25312
94	1·2557 1·2531	1·249 1·246	1·2526 1·2501	1·2490 1·2464	1.25052
93	1.2504	1.244	1.2476	1.2438	1·24790 1·24526
92	1.2478	1.241	1.2451	1.2412	1.24259
91	1.2451	1.239	1.2425	1.2386	1.23990
90	1.2425	1.236	1.2400	1.2360	1.23720
89	1.2398	1.233	1.2373	1.2333	1.23449
88	1.2372	1.231	1.2346	1.2306	1.23178
87 8 6	1.2345	1.228	1.2319	1.2279	1.22907
85	1·2318 1·2292	1.226	1.2292	1.2252	1.22636
84	1.2265	1·223 1·220	1·2265 1·2238	1·2225 1·2198	1.22365
83	1.2238	1.218	1.2238	1.2198	1·22094 1·21823
82	1.2212	1.215	1.2184	1.2144	1.21552
81	1.2185	1.213	1.2157	1.2117	1.21281
80	1.2159	1.210	1.2130	1.2090	1.21010
79	1.2122	1.207	1.2102	1.2063	1.20739
78	1.2106	1.204	1.2074	1.2036	1.20468
77	1.2079	1.202	1.2046	1.2009	1.20197
76 75	1.2042	1.199	1.2018	1.1982	1.19925
74	1·2016 1·1999	1·196 1·193	1.1990	1.1955	1.19653
73	1.1973	1.190	1·1962 1·1934	1·1928 1·1901	1·19381 1·19109
72	1.1945	1.188	1.1906	1.1874	1.18837
71	1.1918	1.185	1.1878	1.1847	1.18565
70	1.1889	1.182	1.1850	1.1820	1.18293
69	1.1858	1.179	•••		1.18020
68	1.1826	1.176			1.17747
67 66	1.1795	1.173	•••	•••	1.17474
65	1·1764 1·1733	1.170	1.1711	1.7005	1.17201
64	1.1702	1·167 1·163	1.1711	1.1685	1.16928
63	1.1671	1.160			1·16654 1·16380
62	1.1640	1.157			1.16107
61	1.1610	1.154			1.15834
60	1.1582	1.151	1.1570	1.1550	1.15561
59 50	1.1556	1.149			1.15288
58 57	1.1530	1:146		•••	1.15015
56	1·1505 1·1480	1.144			1.14742
55	1.1455	1·142 1·140	1.1430	1.1415	1.14469
54	1.1430	1.137	1 1430	1.1415	1·14196 1·13923
53	1.1403	1.135			1.13650
52	1.1375	1.133			1.13377
51	1.1348	1.130			1.13104
50	1.1320	1.128	1.1290	1.1280	1.12831
45	1.1183		1.1155	1.1145	1.11469
40 35	1.1045		1.1020	1.1010	1.10118
30	1·090 7 1·07 7 1		1.0885 1.0750	1.0875	1.08786
25	1.0635		1.0750	1.0740	1.07469
20	1.0498	•••	1.0490	1.0610 1.0480	1.06166
15	1.0374		1 0480	1 0400	1.03622
10	1.0245		1.0245	1.0235	1.02391
5	1.0123		•••		1.01184
0	1.0000		1.0000	1.0000	1.00000

TABLE No. 77

Specific Gravities and Refractive Indices of Aqueous Solutions of Glycerin (Lenz)

Glycerol.	Sp. Gr. at 12°-14° C.	Ref. Ind. at 12.5°- 12.8° C.	Glycerol.	Sp. Gr. at 12°-14° C.	Ref. Ind. at 12.5°- 12.8° C.	Glycerol.	Sp. Gr. at 12°-14° C.	Ref. Ind. at 12.5°- 12.8° C.
Per cent.			Per cent.			Per cent.		
100	1.2691	1.4758	66	1.1764	1.4249	32	1.0825	1.3745
99	1.2664	1.4744	65	1.1733	1.4231	31	1.0798	1.3732
98	1.2637	1.4729	64	1.1702	1.4213	30	1.0771	1.3719
97	1.2610	1.4715	63	1.1671	1.4195	29	1.0744	1.3706
96	1.2584	1.4700	62	1.1640	1.4176	28	1.0716	1.3692
95	1.2557	1.4686	61	1.1610	1.4158	27	1.0689	1.3679
94	1.2531	1.4671	60	1.1582	1.4140	26	1.0663	1.3666
93	1.2504	1.4657	59	1.1556	1.4126	25	1.0635	1.3652
92	1.2478	1.4642	58	1.1530	1.4114	24	1.0608	1:3639
91	1.2451	1.4628	57	1.1505	1.4102	23	1.0580	1.3626
90	1.2425	1.4613	56	1.1480	1.4091	22	1.0553	1.3612
89	1.2398	1.4598	55	1.1455	1.4079	21	1.0525	1.3599
88	1.2372	1.4584	54	1.1430	1.4065	20	1.0498	1.3585
87	1.2345	1.4569	53	1.1403	1.4051	19	1.0471	1.3572
86	1.2318	1.4555	52	1.1375	1.4036	18	1.0446	1.3559
85	1.2292	1.4540	51	1.1348	1.4022	17	1.0422	1.3546
84	1.2265	1.4525	50	1.1320	1.4007	16	1.0398	1.3533
83	1.2238	1.4511	49	1.1293	1.3993	15	1.0374	1.3520
82	1.2212	1.4496	48	1.1265	1.3979	14	1.0349	1.3507
81	1.2185	1.4482	47	1.1238	1.3964	13	1.0332	1.3494
80	1.2159	1.4467	46	1.1210	1.3950	12	1.0297	1.3480
79	1.2122	1.4453	45	1.1183	1.3935	11	1.0271	1:3467
78	1.2106	1.4438	44	1.1155	1.3921	10	1.0245	1.3454
77	1.2079	1 4424	43	1.1127	1.3906	9	1.0221	1.3442
76	1.2042	1.4409	42	1.1100	1.3890	8	1.0196	1.3430
75	1.2016	1.4395	41	1.1072	1.3875	7	1.0172	1:3417
74	1.1999	1.4380	40	1.1045	1.3860	. 6	1.0147	1.3405
$7\overline{3}$	1.1973	1.4366	39	1.1017	1.3844	5	1.0123	1.3392
72	1.1945	1.4352	38	1.0989	1.3829	4	1.0098	1.3380
71	1.1918	1.4337	37	1.0962	1.3813	3	1.0074	1 3367
70	1.1889	1.4321	36	1.0934	1.3798	2	1.0049	1.3355
69	1.1858	1.4304	35	1.0907	1.3785	1	1.0025	1.3342
68	1.1826	1.4286	34	1.0880	1.3772			
67	1.1795	1.4267	33	1.0852	1.3758	[[

TABLE No. 78

Specific Gravities, Boiling Points, and Vapour Tensions of Aqueous Solutions of Glycerin (Gerlach)

	Parts of Glycerol	Specific	Gravity.	Boiling Point. At	Vapour Tension at 100° C.	
Glycerol.	compared with 100 parts of Water.	At 15° C. Water 15° C.=1.	At 20° C. Water 20° C. = 1.	Point. At 760 mm. Pressure.		
Per cent.				°C.	mm.	
100	Glycerin	1.2653	1.2620	290	64	
99	9900	1.2628	1.2594	239	87	
98	4900	1 2602	1.2568	208	107	
97	3233 333	1.2577	1.2542	188	126	
96	2400	1.2552	1.2516	175	144	
95	1900	1.2526	1.2490	164	162	
94	1566.666	1.2501	1.2464	156	180	
93	1328.571	1.2476	1.2438	150	198	
92	1150	1.2451	1.2412	145	215	
91	1011.111	1.2425	1.2386	141	231	
90	900	1.2400	1.2360	138	247	
89	809.090	1.2373	1.2333	135	263	
88	733.333	1.2346	1.2306	132.5	279	
87	669.231	1.2319	1.2279	130.5	295	
86	614.286	1.2292	1.2252	129	311	
85 84	566.666	1.2265	1.2225	127.5	326 340	
83	525	1·2238 1·2211	1.2198	126	340 355	
82	488.235		1.2171	124.5	355 370	
81	455.555	1.2184	1.2144	123 122	370 384	
80	426.316	1.2157 1.2130	1.2117	121	396	
79	400 376·190	1.2102	1.2063	120	408	
78	354.500	1.2074	1.2036	119	419	
77	334.782	1.2046	1.2009	118.2	430	
76	316.666	1.2018	1.1982	117.4	440	
75	300	1.1990	1.1955	116.7	450	
74	284.615	1.1962	1.1928	116	460	
73	270.370	1 1902	1.1901	115.4	470	
72	257.143	1.1906	1.1874	114.8	480	
71	244 828	1.1878	1.1847	114.2	489	
70	233.333	1.1850	1.1820	113.6	496	
65	185.714	1.1710	1.1685	111.3	553	
60	150	1.1570	1.1550	109	565	
55	122-222	1.1430	1.1415	107.5	593	
50	100	1.1290	1.1280	106	. 618	
45	81.818	1.1155	1.1145	105	639	
40	66.666	1.1020	1.1010	104	657	
35	53.846	1.0885	1.0875	103.4	675	
30	42.857	1.0750	1.0740	102.8	690	
25	33.333	1.0620	1.0610	102.3	704	
20	25	1.0490	1.0480	101.8	717	
10	11.111	1.0245	1.0235	100.9	740	
0	0	1.0000	1.0000	100	760	

PART III GENERAL TABLES

Table No. 79

Comparison of different Thermometric Scales

Fahr.	Cels.	Réaum.	Fahr.	Cels.	Réaum.	Fahr.	Cels.	Réaum
-40	- 40.0	- 32:0	+10	-12.2	-9.8	+60	+15.6	⊥12·4
39	39.4	31.6	11	11.7	9.3	61	16.1	12.9
38	38.9	31.1	12	11.1	8.9	62	16.7	13.3
37	38.3	30.7	13	10.6	8.4	63	17.2	13.8
36	37.8	30.2	14	10.0	8.0	64	17.8	14.2
35	37.2	29.8	15	9.4	7.6	65	18.3	14.7
34	36.7	29.3	16	8.9	7.1	66	18.9	15.1
33	36.1	28.9	17	8.3	6.7	67	19.4	15.6
32	35.6	28.4	18	7.8	6.2	68	20.0	16.0
31	35.0	28.0	19	7.2	5.8	69	20.6	16.4
30	34.4	27.6	20	6.7	5.3	70	21.1	16.9
29	33.9	27.1	21	6.1	4.9	71	21.7	17.3
28	33.3	26.7	22	5.6	4.4	72	22.2	17.8
27 27	32.8	26.2	23	5.0	4.0	73	22.8	18.2
26	32.2	25.8	23	4.4	3.6	74	23.3	18.7
25	31.7	25.3	25	3.9	3.1	75	23.9	19.1
23 24	31.1	24.9	26	3.3	2.7	76	24.4	19.6
23	30.6	24.4	27	2.8	2.2	77	25.0	20.0
22 22	30.0	24.0	28	2.2	1.8	78	25.6	20.4
21	29.4	23.6	29	1.7	1.3	79	26.1	20.9
20	28.9	23.1	30	1.1	0.9	80	26.7	21.3
20 19	28.3	23.7	31	0.6	0.4	81	27.2	21.8
18	27·8	22.2	32	4.0.0	+0.0	82	27.8	22.2
17	27.2	21.8	33	0.6	0.4	83	28.3	22.7
16	26.7	21.3	34	1.1	0.9	84	28.9	23.1
15	26.1	20.9	35	1.7	1.3	85	29.4	23.6
14	25.6	20.4	36	2.2	1.8	86	30.0	24.0
13	25.0	20.0	37	2.8	2.2	87	30.6	24.4
12	24.4	19.6	38	3.3	2.7	88	31.1	24.9
11	23.9	19.1	39	3.9	3.1	89	31.7	25.3
10	23.3	18.7	40	4.4	3.6	90	32.2	25.8
9	22.8	18.2	41	5.0	4.0	91	32.8	26.2
8	22.2	17.8	42	5.6	4.4	92	33.3	26.7
7	21.7	17.3	42	6.1	4.9	93	33.9	27.1
6	21.1	16.9	44	6.7	5.3	94	34.4	27.6
5	20.6	16.4	45	7.2	5.8	95	35.0	28.0
4	20.0	16.0		7.8	6.2	96	35.6	28.4
3	19.4	15.6	46	8.3	6.7	97	36.1	28.9
2	18.9	15.1	47 48		7.1	98	36.7	29.3
1	18.3	14.7	48	8·9 9·4	7.6	99	37.2	29.8
0	17.8	14.2	50	10.0	8.0	100	37.8	30.2
+1	17·8 17·2	13.8	50 51	10.6	8.4	101	38.3	30.7
2	16.7	13.3	51 52	11.1	8.9	101	38.9	31.1
3	16.1	12.9	52 53	11.7	9.3	102	39.4	31.6
4	15.6	12.4	54	12.2	9.8	103	40.0	32.0
5	15.0	12.0	54 55	12.8	10.2	104	40.6	32.4
6	14.4	11.6	56	13.3	10.2	105	41.1	32.4
7	13.3	11.1	56 57	13.3	11.1	106	41.7	33.3
8	13.3	10.7	57 58	14.4	11.6	107	42.2	33.8
9	12.8	10.7	58 59	15.0	12.0	108	42.8	34.2
0	14 0	102	อษ	19.0	12.0	TOA	440	34.2

TABLE No. 79—continued

Comparison of different Thermometric Scales

Fahr.	Cels.	Réaum.	Fahr.	Cels.	Réaum.	Fahr.	Cels.	Réaum.
+ 110	+43.3	+34.7	+145	+62.8	+50.2	+180	+82.2	+65.8
111	43.9	35.1	146	63.3	50.7	181	82.8	66.2
112	44.4	35.6	147	63.9	51.1	182	83.3	66.7
113	45.0	36.0	148	64.4	51.6	183	83.9	67.1
114	- 45.6	36.4	149	65.0	52.0	184	84.4	67.6
115	46.1	36.9	150	65.6	52.4	185	85.0	68.0
116	46.7	37.3	151	66.1	52.9	186	85.6	68.4
117	47.2	37.8	152	66.7	53.3	187	86.1	68.9
118	47.8	38.2	153	67.2	53.8	188	86.7	69.3
119	48.3	38.7	154	67.8	54.2	189	87.2	69.8
120	48.9	39.1	155	68.3	54.7	190	87.8	70.2
121	49.4	39.6	156	68.9	55.1	191	88.3	70.7
122	50.0	40.0	157	69.4	55.6	192	88.9	71.1
123	50.6	40.4	158	70.0	56.0	193	89.4	71.6
124	51.1	40.9	159	70.6	56.4	194	90.0	72.0
125	51.7	41.3	160	71.1	56.9	195	90.6	72.4
126	52.2	41.8	161	71.7	57.3	196	91.1	72.9
127	52.8	42.2	162	72.2	57.8	197	91.7	73.3
128	53.3	42.7	163	72.8	58.2	198	92.2	73.8
129	53.9	43.1	164	73.3	58.7	199	92.8	74.2
130	54.4	43.6	165	73.9	59.1	200	93.3	74.7
131	55.0	44.0	166	74.4	59.6	201	93.9	75.1
132	55.6	44.4	167	75.0	60.0	202	94.4	75.6
133	56.1	44.9	168	75.6	60.4	203	95.0	76.0
134	56.7	45.3	169	76.1	60.9	204	95.6	76.4
135	57.2	45.8	170	76.7	61.3	205	96.1	76.9
136	57.8	46.2	171	77.2	61.8	206	96.7	77.3
137	58.3	46.7	172	77.8	62.2	207	97.2	77.8
138	58.9	47.1	173	78.3	62.7	208	97.8	78.2
139	59.4	47.6	174	78.9	63.1	209	98.3	78.7
140	60.0	48.0	175	79.4	63.6	210	98.9	79.1
141	60.6	48.4	176	80.0	64.0	211	99.4	79.6
142	61.1	48.9	177	80.6	64.4	212	100.0	80.0
143	61.7	49.3	178	81.1	64.9			1
144	62.2	49.8	179	81.7	65.3	1!	1	

Table No. 80

Comparison of different Thermometric Scales

Cels.	, Réaum.	Fahr.	Cels.	Réaum.	Fahr.	Cels.	Résum.	Fahr.
- 40	- 32:0	- 40.0	+7	+5.6	+44.6	+54	+43.2	+129.2
39	31.2	38.2	8	6.4	46.4	55	44.0	131.0
38	30.4	36.4	9	7.2	48.2	56	44.8	132.8
37	29.6	34.6	10	8.0	50.0	57	45.6	134.6
36	28.8	32.8	11	8.8	51.8	58	46.4	136.4
35	28.0	31.0	12	9.6	53.6	59	47.2	138.2
34	27.2	29.2	13	10.4	55.4	60	48.0	140.0
33	26.4	27.4	14	11.2	57.2	61	48.8	141.8
32	25.6	25.6	15	12.0	59.0	62	49.6	143.6
31	24.8	23.8	16	12.8	60.8	63	50.4	145.4
30	24.0	22.0	17	13.6	62.6	64	51.2	147.2
29	23.2	20.2	18	14.4	64.4	65	52.0	149.0
28	22.4	18.4	19	15.2	66.2	66	52.8	150.8
27	21.6	16.6	20	16.0	68.0	67	53.6	152.6
26	20.8	14.8	21	16.8	69.8	68	54.4	154.4
25	20.0	13.0	22	17.6	71.6	69	55.2	156.2
24	19.2	11.2	23	18.4	73.4	70	56.0	158.0
23	18.4	9.4	24	19.2	75.2	71	56.8	159.8
22	17.6	7.6	25	20.0	77.0	72	57.6	161.6
21	16.8	5.8	26	20.8	78.8	73	58.4	163.4
20	16.0	4.0	27	21.6	80.6	74	59.2	165.2
19	15.2	2.2	28	22.4	82.4	75	60.0	167.0
18	14.4	0.4	29	23.2	84.2	76	60.8	168.8
17	13.6	+1.4	30	24.0	86.0	77	61.6	170.6
16	12.8	3.2	31	24.8	87.8	78	62.4	172.4
15	12.0	5.0	32	25.6	89.6	79	63.2	174.2
14	11.2	6.8	33	26.4	91.4	80	64.0	176.0
13	10.4	8.6	34	27.2	93.2	81	64.8	177.8
12	9.6	10.4	35	28.0	95.0	82	65.6	179.6
11	8.8	12.2	36	28.8	96.8	83	66.4	181.4
10	8.0	14.0	37	29.6	98.6	84	67.2	183.2
9	7.2	15.8	38	30.4	100.4	85	68.0	185.0
8	6.4	17.6	39	31.2	102.2	86	68.8	186.8
7	5.6	19.4	40	32.0	104.0	87	69.6	188.6
6	4.8	21.2	41	32.8	105.8	88	70.4	190.4
5	4.0	23.0	42	33.6	107.6	89	71.2	192.2
4	3.2	24.8	43	34.4	109.4	90	72.0	194.0
3	2.4	26.6	44	35.2	111.2	91	72.8	195.8
2	1.6	28.4	45	36.0	113.0	92	73.6	197.6
1	0.8	30.2	46	36.8	114.8	93	74.4	199.4
. 1	0.0	32.0	47	37.6	116.6	94	75.2	201.2
+1	+0.8	33·8 35·6	48	38.4	118.4	95	76.0	203.0
2 3	1.6	37.4	49 50	39.2	120.2	96	76·8 77·6	204.8
	2.4		51	40.0	122.0	97		
4 5	3.2	39.2		40.8	123.8	98	78.4	208.4
э 6	4.0	41.0	52 53	41.6 42.4	125.6	99 100	79.2	210·2 212·0
0	4.8	42.8	00	42.4	127.4	100	80.0	712.0

Table No. 81

Comparison of the Hydrometer Degrees according to Baumé and Twaddell with the Specific Gravities

0 0 1 000 19·3 31 1·155 36·0 66·4 0·7 1 1·005 19·8 32 1·160 36·2 66·4 1·0 1·4 1·007 20·0 32·4 1·162 36·6 68 1·4 2 1·010 20·3 33 1·165 37·0 69 2·0 2·8 1·014 20·9 34 1·170 37·4 70 2·1 3 1·015 21·0 34·2 1·171 37·8 71 2·7 4 1·020 21·4 35 1·175 38·0 71·4 3·0 4·4 1·022 22·0 36 1·180 38·2 72 3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195	Specific Gravity.	Twad- dell.	Baumé.	Specific Gravity.	Twad- dell.	Baumé.	Specific Gravity.	Twad- dell.	Baumé.
1·0 1·4 1·007 20·0 32·4 1·162 36·6 68 1·4 2 1·010 20·3 33 1·165 37·0 69 2·0 2·8 1·014 20·9 34 1·170 37·4 70 2·1 3 1·015 21·0 34·2 1·171 37·8 71 2·7 4 1·020 21·4 35 1·175 38·0 71·4 3·0 4·4 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210	1.332								
1·4 2 1·010 20·3 33 1·165 37·0 69 2·0 2·8 1·014 20·9 34 1·170 37·4 70 2·1 3 1·015 21·0 34·2 1·171 37·8 71 2·7 4 1·020 21·4 35 1·175 38·0 71·4 3·0 4·4 1·022 22·0 36 1·180 38·2 72 3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210	1.335							- 1	
2·0 2·8 1·014 20·9 34 1·170 37·4 70 2·1 3 1·015 21·0 34·2 1·171 37·8 71 2·7 4 1·020 21·4 35 1·175 38·0 71·4 3·0 4·4 1·022 22·0 36 1·180 38·2 72 3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215	1.340								
2·1 3 1·015 21·0 34·2 1·171 37·8 71 2·7 4 1·020 21·4 35 1·175 38·0 71·4 3·0 4·4 1·022 22·0 36 1·180 38·2 72 3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220	1.345								
2·7 4 1·020 21·4 35 1·175 38·0 71·4 3·0 4·4 1·022 22·0 36 1·180 38·2 72 3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225	1.350	70	37.4	1.170	34	20.9	1.014	2.8	2.0
3·0 4·4 1·022 22·0 36 1·180 38·2 72 3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79·4 7·4 11 1·055 26·4 45 1·225 41·0 79·4 8·0 12 1·060 27·0 46·2 1·231	1.355		1						
3·4 5 1·025 22·5 37 1·185 38·6 73 4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231	1.357								
4·0 5·8 1·029 23·0 38 1·190 39·0 74 4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.360							1	
4·1 6 1·030 23·5 39 1·195 39·4 75 4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.365								
4·7 7 1·035 24·0 40 1·200 39·8 76 5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.370	74	39.0	1.190	38	23.0	1.029	5.8	4.0
5·0 7·4 1·037 24·5 41 1·205 40·0 76·6 5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.375								
5·4 8 1·040 25·0 42 1·210 40·1 77 6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.380								
6·0 9 1·045 25·5 43 1·215 40·5 78 6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.383								
6·7 10 1·050 26·0 44 1·220 40·8 79 7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.385		40.1	1.210					
7·0 10·2 1·052 26·4 45 1·225 41·0 79·4 7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1.390	78	40.5	1.215	43	25.5	1.045	9	6.0
7·4 11 1·055 26·9 46 1·230 41·2 80 8·0 12 1·060 27·0 46·2 1·231 41·6 81	1 395								
8.0 12 1.060 27.0 46.2 1.231 41.6 81	1.397		1	1.225					
	1.400								
8.7 13 1.065 27.4 47 1.235 42.0 82	1.405	81	41.6	1.231					
	1.410	82	42.0	1.235	47	27.4	1.065	13	8.7
9.0 13.4 1.067 27.9 48 1.240 42.3 83	1.415	83	1						
9.4 14 1.070 28.0 48.2 1.241 42.7 84	1.420								
10.0 15 1.075 28.4 49 1.245 43.0 84.8	1.424								
10.6 16 1.080 28.8 50 1.250 43.1 85	1.425	85	43.1	1.250					
11.0 16.6 1.083 29.0 50.4 1.252 43.4 86	1.430	86	43.4	1.252	50.4	29.0	1.083	16.6	11.0
11.2 17 1.085 29.3 51 1.255 48.8 87	1.435								
11.9 18 1.090 29.7 52 1.260 44.0 87.6	1.438								
12.0 18.2 1.091 30.0 52.6 1.263 44.1 88	1.440					1			
12.4 19 1.095 30.2 53 1.265 44.4 89	1.445					1		1	
13.0 20 1.100 30.6 54 1.270 44.8 90	1.450	90	44.8	1.270	54	30.6	1.100	20	13.0
13.6 21 1.105 31.0 54.8 1.274 45.0 90.6	1.453								
14.0 21.6 1.108 31.1 55 1.275 45.1 91	1.455								
14.2 22 1.110 31.5 56 1.280 45.4 92	1.460		1	1.280		1		1	
14.9 23 1.115 32.0 57 1.285 45.8 93'	1.465	93′	45.8	1.285		32.0			
15.0 23.2 1.116 32.4 58 1.290 46.0 93.6	1.468	93.6	46.0	1.290	58	32.4	1.116	23.2	15.0
15.4 24 1.120 32.8 59 1.295 46.1 94	1.470								
16.0 25 1.125 33.0 59.4 1.297 46.4 95	1.475	95	46.4	1.297	59.4	33.0			
16.5 26 1.130 33.3 60 1.300 46.8 96	1.480								
17.0 26.8 1.134 33.7 61 1.305 47.0 96.6	1.483	96.6	47.0	1.305		33.7			
17.1 27 1.135 34.0 61.6 1.308 47.1 97	1.485	97	47.1	1.308	61.6	34.0	1.135	27	17.1
17.7 28 1.140 34.2 62 1.310 47.4 98	1.490	98	47.4	1.310		34.2			
18.0 28.4 1.142 34.6 63 1.315 47.8 99	1.495	99	47.8	1.315	63	34.6	1.142	28.4	
18.3 29 1.145 35.0 64 1.320 48.0 99.6	1.498					35.0	1.145	29	18.3
18.8 30 1.150 35.4 65 1.325 48.1 100								30	
	1.500								
19.0 30.4 1.152 35.8 66 1.330 48.4 101	1.500	101		1.330		35.8	1.152	30.4	19.0

TABLE No. 81—continued

Baumé.	Twad- dell.	Specific Gravity.	Baumé.	Twad- dell.	Specific Gravity.	Baumé.	Twad- dell.	Specific Gravity
48.7	102	1.510	56.0	127	1.635	61.8	150	1.750
49.0	103	1.515	56.3	128	1.640	62.0	150.6	1.753
49.4	104	1.520				62.1	151	1.755
49.7	105	1.525	56.6	129	1.645	62.3	152	1.760
50.0	106	1.530	56.9	130	1.650	62.5	153	1.765
			57.0	130.4	1.652			
50.3	107	1.535	57.1	131	1.655	62.8	154	1.770
50.6	108	1.540	57.4	132	1.660	63.0	155	1.775
50.9	109	1.545	i i			63.2	156	1.780
51.0	109.2	1.546	57.7	133	1.665	63.5	157	1.785
51.2	110	1.550	57.9	134	1.670	63.7	158	1.790
			58.0	134.2	1.671			
51.5	111	1 555	58.2	135	1.675	64.0	159	1.795
51.8	112	1.560	58.4	136	1.680	64.2	160	1.800
52.0	112.6	1.563				64.4	161	1.805
52.1	113	1.565	58.7	137	1.685	64.6	162	1.810
52.4	114	1.570	58.9	138	1.690	64.8	163	1.815
			59.0	138.2	1.691			
52.7	115	1.575	59.2	139	1.695	65.0	164	1.820
53.0	116	1.580	59.5	140	1.700	65.2	165	1.825
53.3	117	1.585				65.5	166	1.830
53.6	118	1.590	59.7	141	1.705	65.7	167	1.835
53.9	119	1.595	60.0	142	1.710	65.9	168	1.840
			60.2	143	1.715			
54.0	119.4	1.597	60.4	144	1.720	66.0	168.4	1.842
54.1	120	1.600	60.6	145	1.725	66.1	169	1.845
54.4	121	1.605				66.3	170	1.850
54.7	122	1.610	60.9	146	1.730	66.5	171	1.855
55.0	123	1.615	61.0	146.4	1.732	66.7	172	1.860
			61.1	147	1.735	[
55.2	124	1.620	61.4	148	1.740	67.0	173	1.865
55.5	125	1.625	61.6	149	1.745			
55.8	126	1.630						

 $\label{eq:Table No. 82}$ Degrees Baumé for Liquids lighter than Water at 15.5° C. = 60° F.

Degrees.	Specific Gravity.	Degrees.	Specific Gravity.	Degrees.	Specific Gravity.	Degrees.	Specific Gravity.	Degrees.	Specific Gravity.
10 11	1·0000 0·9929	24 25	0·9090 0·9032	38 39	0·8293 0·8284	51 52	0·7734 0·7692	64 65	0·7216 0·7179
12	0.9859	26	0.8974	40	0.8235	53	0.7650	66	0.7142
13 14	0.9790	27 28	0.8917 0.8860	41 42	0.8187 0.8139	54 55	0·7608 0·7567	67 · 68	0.7106
15	0.9655	29	0.8805	43	0.8092	56	0.7526	69	0.7035
16	0.9589	30	0.8750	44	0.8045	57	0.7486	70	0.7000
17 18	0.9523	31 32	0.8695	45 46	0.8000 0.7954	58 59	0·7446 0·7407	75 80	0.6829 0.6666
19	0.9395	33	0.8588	47	0.7909	60	0.7368	85	0.6511
$\begin{array}{c} 20 \\ 21 \end{array}$	0.9333 0.9271	34 35	0.8536 0.8484	48 49	0.7865 0.7821	61 62	0·7326 0·7290	90 95	0.6363 0.6222
22	0.9211	36	0.8433	50	0.7777	63	0.7253	100	0.6087
23	0.9150	37	0.8383					ļ	

Table No. 83

Specific Gravities of Hydrochloric Acids

Spec.	Вапте.	Twad.		100	Parts c	orrespon	d to			1 Lite	er contai	ins Kilog	grams	
Grav. at 14° C. (in vacuo).	Degrees Ba	Degrees Tv	HCl Per Cent.	18° Bé. Acid Per Cent.	19° Bé. Acid Per Cent.	20° Bé. Acid Per Cent.	21° Bé. Acid Per Cent.	22° Bé. Acid Per Cent.	HCl.	18° Bé. Acid.	19° Bé. Acid.	20° Bé. Acid.	21° Bé. Acid.	22° Bé. Acid.
1.000	0.0	0.0	0.16	0.57	0.53	0.49	0.47	0.45	0.0016	0.0057	0.0053	0.0049	0.0047	0.0045
1.005	0.7	1	1.15	4.08	3.84	3.58	3.42		0.012	0.041	0.039	0.036		0.033
1.010	1.4	2	2.14	7.60	7.14	6.66	6.36		0.022	0.077		0.076		0.061
1.015	2.1	3	3.12	11.08	10.41	9.71	9.27		0.032	0.113		0.099	0.094	0.089
1.020	2.7	4	4.13	14.67	13.79	12.86	12.27		0.042	0.150	0.141	0.131	0.125	0.119
1.025	3.4	5	5.15	18:30	17:19	16.04	15.30		0.053	0.188		0.164	0.157	0.149
1.030	4.1	6	6.15	21.85	20.53	19.16	18.27		0.064	0.225		0.197	0.188	0.179
1.035	4.7	7	7.15	25.40	23.87	22.27	21.25		0.074	0.263	0.247	0.231	0.220	0.209
1.040	5.4	8	8.16	28.99	27.24	25.42	24.25		0.085	0.302	0.283	0.264	0.252	0.240
1.045	6.0	9	9.16	32.55	30.58	28.53	27.22		0.096	0.340	0.320	0.298	0.284	0.270
1.050	6.7		10.17	36.14	33.95	31.68	30.22		0.107	0.380	0.357	0.333	0.317	0.302
1.055	7.4		11.18	39.73	37.33	34.82	33.22		0.118	0.419		0.367	0.351	0.333
1.060	8.0		12.19	43.32	40.70	37.97	36.23		0.129	0.459		0.403	0.384	0.365
1.065	8.7		13.19	46.87	44.04	41.09	39.20		0.141	0.499	0.469	0.438	0.418	0.397
1.070	9.4		14.17	50.35	47.31	44.14	42.11		0.152	0.539		0.472	0.451	0.428
1.075	10.0		15.16	53.87	50.62	47.22	45.05		0.163	0.579	0.544	0.508	0.484	0.460
1.080	10.6		16.12	57.39	53.92	50.31	47.99		0.174	0.620	0.582	0.543	0.518	0.493
1.085	11.2		17.13	60.87	57.19	53.36	50.90		0.186	0.660		0.579	0.552	0.523
1.090	11.9		18.11	64.35	60.47	56.41	53.82		0.197	0.701	0.659	0.615	0.587	0.558
1.095	12.4		19.06	67.73	63.64	59.37	56.64		0.209	0.742	0.697	0.650	0.620	0.590
1.100	13.0		20.01	71.11	66.81	62.33	59.46		0.220	0.782		0.686	0.654	0.622
1.105	13.6		20.97	74.52	70.01	65.32	62.32		0.232	0.823	0.774	0.722	0.689	0.655
1.110	14.2		21.92	77.89	73.19	68.28	65.14		0.243	0.865	0.812	0.758	0.723	0.687
1.115	14.9		22.86	81.23	76.32	71.21	67.93		0.255	0.906	0.851	0.794	0.757	0.719
1.120	15.4		23.82		79.53	74.20	70.79		0.267	0.948	0.891	0.831	0.793	0.754
1.125	16.0		24.78	88.06	82.74	77.19	73.74		0.278	0.991	0.931	0.868	0.828	0.788
1.130	16.5		25.75	91.50	85.97	80.21	76.52		0.291	1.034	0.972	0.906	0.865	0.822
1.135	17.1		26.70		89.15	83.18	79.34		0.303	1.077	1.011	0.944	0.901	0.856
1.140	17.7		27.66		92.35	86.17	82.20		0.315	1.121	1.053	0.982	0.937	0.891
1.1425				100.00	93.95	87.66	83.62		0.322	1.143	1.073	1.002	0.955	0.908
1.145	18.3	29		101.67	95.52		85.02		0.328	1.164	1.094	1.021	0.973	0.926
1.150	18.8			105.08	98.73	92.11	87.87		0.340	1.208	1.135	1.059	0.011	0.961
1.152	19.0			106.43			89.01		0.345	1.226	1.152	1.075	1.025	0.975
1.155	19.3	31		108.58			90.79		0.353	1.254	1.178	1.099	1.049	0.997
	19.8			112.01		98.19	93.67		0.366	1 299	1.221	1.139	1.087	1.033
	20.0			114.07			95.39		0.373	1.326	1.246	1.163	1.109	1.054
1.165	20.3	33		115.46			96.55		0.379	1.345	1.264	1.179	1.125	1.070
1.170	20.9			118.91			99.43		0.392	1.391	1.307	1.220	1.163	1.106
1.171	21.0	101		119.58					0.394	1.400	1.316	1.227	1.171	1.113
1.175	21.4	35		122.32					0.404	1.437	1.350	1.260	1.202	1.143
1.180	22.0	34	35.30	125.76	118.16	110.24	105.17	100.00		1.484	1.394	1.301	1.241	1.180
1.185	22.5			129.03						1.529	1.437	1.340	1.279	1.216
1.190	23.0			132.30						1.574	1.479	1.380	1.317	1.252
1.195	23.5			135.61						1.621	1.523	1.421	1.355	1.289
1.200	24.0			138.98						1.667	1.567	1.462	1.395	1.326
1 200	23 0	1 =0	30 11	1.00 00	1200 90	121 04	110 22	110 91	409	1 007	1 207	1 402	1 000	1 340

TABLE No. 84

Specific Gravities of Mixtures of Pure Sulphuric Acid and Water

Specific Gravity				100 Pa	arts contain	ı	1	Liter con	tains Kilog	rams
at y. C. (in vacuo)	Degrees Baumé.	Degrees Twaddell.	'SO ₃ . Per cent.	SO ₄ H ₂ . Per cent.	60 Degrees Acid. Per cent.	50 Degrees Acid. Per cent.	SO ₃ .	80 ₄ H ₂ .	60 Degrees Acid.	50 Degrees Acid.
1.000	0	0	0.07	0.09	0.12	0.14	0.001	0.001	0.001	0.001
1.005	0.7	i	0.68	0.83	1.06	1.33	0.007	0.008	0.011	0.013
1.010	1.4	2	1.28	1.57	2.01	2.51	0.013	0.016	0.020	0.025
1.015	2.1	3	1.88	2.30	2.95	3.68	0.019	0.023	0.030	0.037
1.020	2.7	4	2.47	3.03	3.88	4.85	0.025	0.031	0.040	0.050
1.025	3.4	5	3.07	3.76	4.82	6.02	0.032	0.039	0.049	0.062
1.030	4.1	6	3.67	4.49	5.78	7.18	0.038	0.046	0.059	0.074
1.035	4.7	7	4.27	5.23	6.73	8.37	0.044	0.054	0.070	0.087
1.040	5.4	8	4.87	5.96	7.64	9.54	0.051	0.062	0.079	0.099
1.045	6.0	9	5.45	6.67	8.55	10.67	0.057	0.071	0.089	0.112
1.050	6.7	10	6.02	7:37	9.44	11.79	0.063	0.077	0.099	0.124
1.055	7.4	11	6.59	8.07	10.34	12.91	0.070	0.085	0.109	0.136
1.060	8.0	12	7.16	8.77	11.24	14.03	0.076	0.093	0.119	0.149
1.065	8.7	13	7.73	9.47	12.14	15.12	0.085	0.102	0.129	0.161
1.070	9.4	14	8.32	10.19	13.05	16.30	0.088	0.109	0.140	0.174
1.075	10.0	15	8.90	10.90	13.96	17.44	0.096	0.117	0.150	0.188
1.080	10.6	16	9.47	11.60	14.87	18.56	0.103	0.125	0.161	0.201
1.085	11.2	17	10.04	12.30	15.76	19.68	0.109	0.133	0.171	0.213
1.090	11.9	18	10.60	12.99	16.65	20.78	0.116	0.142	0.181	0.227
1.095	12.4	19	11.16	13.67	17.52	21.87	0.122	0.150	0.192	0.240
1.100	13.0	20	11.71	14.35	18:39	22.96	0.129	0.158	0.202	0.253
1·105 1·110	13.6 14.2	21 22	$ \begin{array}{c} 12.27 \\ 12.82 \end{array} $	15.03 15.71	19·26 20·13	24.05 25.14	0·136 0·143	0.166	0·212 0·223	0.265
1.112	14.9	23	13.36	16.36	20.96	26.18	0.149	0.183	0.234	0·279 0·292
1.120	15.4	23	13.89	17.01	21.80	27.22	0.156	0.191	0.245	0.305
1.125	16.0	25	14.42	17.66	22.63	28.26	0.162	0.199	0.255	0.318
1.130	16.2	26	14.95	18.31	23.47	29:30	0.169	0.207	0.265	0.331
1.135	17.1	27	15.48	18.96	24.29	30.34	0.176	0.215	0.276	0.344
1.140	17.7	28	16.01	19.61	25.13	31.38	0.183	0.223	0.287	0.358
1.145	18.3	29	16.54	20.26	25.96	32.42	0.189	0.231	0.297	0.371
1.150	18.8	30	17.07	20.91	26.79	33.46	0.196	0.239	0.308	0.385
1.155	19.3	31	17.59	21.55	27.61	34.48	0.203	0.248	0.319	0.398
1.160	19.8	32	18.11	22.19	28.43	35.50	0.210	0.257	0.330	0.412
1.165	20.3	33	18.64	22.83	29.25	36.53	0.217	0.266	0.341	0.426
1.170	20.9	34	19.16	23.47	30.07	37.55	0.224	0.275	0.352	0.439
1.175	21.4	35	19.69	24.12	30.90	38.59	0.231	0.283	0.363	0.453
1.180	22.0	36	20.21	24.76	31.73	39.62	0.238	0.292	0.374	0.467
1.185	22.5	37	20.73	25.40	32.55	40.64	0.246	0.301	0.386	0.481
1.190	23.0	38	21.26	26.04	33:37	41.66	0.253	0.310	0.397	0.496
1.195	23.5	39	21.78	26 68	34.19	42.69	0.260	0.319	0.409	0.511
1.200	24.0	40	22.30	27.32	35.01	43.71	0.268	0.328	0.420	0.525
1.205	24.5	41	22.82	27.95	35.83	44.72	0.275	0.337	0.432	0.539
1.210	25.0	42	23.33	28.58	36.66	45.73	0.282	0.346	0.444	0.223
1.215	25.5	43	23.84	29.21	37.45	46.74	0.290	0.355	0.455	0.268
1.220	26.0	44	24.36	29.84	38.23	47.74	0.297	0.364	0.466	0.583

TABLE No. 84—continued

Specific				100 Pa	arts contair	1	1	Liter con	tains Kilog	rams
Gravity at 14° C. (in vacuo).	Degrees Baumé.	Degrees Twaddell.	803. Per cent.	SO ₄ H ₂ . Per cent.	60 Degrees Acid. Per cent.	50 Degrees Acid. Per cent.	803.	SO ₄ H ₂ .	60 Degrees Acid.	50 Degrees Acid.
1.225	26.4	45	24.88	30.48	39.05	48.77	0.305	0.373	0.478	0.598
1.230	26.9	46	25.39	31.11	39.86	49.78	0.312	0.282	0.490	0.612
1.235	27.4	47	25.88	31.70	40.61	50.72	0.320	0.391	0.502	0.626
1.240	27.9	48	26.35	32.28	41.37	51.65	0.327	0.400	0.513	0.640
1.245	28.4	49	26.83	32.86	42.11	52.58	0.334	0.409	0.524	0.655
1.250	28.8	50	27.29	33.43	42.84	53.49	0.341	0.418	0.535	0.669
1.255	29.3	51	27.76	34.00	43.57	54.40	0.348	0.426	0.547.	0.683
1.260	29.7	52	28.22	34.57	44.30	55.31	0.356	0.435	0.558	0.697
1.265	30.2	53	28.69	35.14	45.03	56.22	0.363	0.444	0.570	0.711
1.270	30.6	54	29.15	35.71	45.76	57.14	0.370	0.454	0.281	0.725
1.275	31.1	55	29.62	36.29	46.50	58.06	0.377	0.462	0.293	0.740
1.280	31.2	56	30.10	36.87	47.24	58.99	0.385	0.472	0.605	0.755
1.285	32.0	57	30.57	37.45	47·99 48·73	59.92	0.393	0.481	0.617	0.770
1.290	32.4	58	31.04	38.03		60.85	0.400	0.490	0.629	0.785
1.295	32.8	59	31.52	38.61	49·47 50·21	61.78	0.408	0.500	0.641	0.800
1·300 1·305	33·3 33·7	60	31·99 32·46	39.77	50.96	62.70	0.424	0.519	0.653	0.815
1.310	34.2	62	32.94	40.35	51.71	64.56	0.432	0.529	0.665 0.677	0.830
1.315	34.6	63	33.41	40.93	52.45	65.45	0.439	0.538	0.689	0.860
1.320	35.0	64	33.88	41.50	53.18	66.40	0.447	0.548	0.702	0.876
1.325	35.4	65	34.35	42.08	53.92	67.33	0.455	0.557	0.714	0.892
1.330	35.8	66	34.80	42.66	54.67	68.26	0.462	0.567	0.727	0.908
1.335	36.2	67	35.27	43.20	55.36	69.12	0.471	0.577	0.739	0.923
1.340	36.6	68	35.71	43.74	56.05	69.98	0.479	0.586	0.751	0.938
1.345	37.0	69	36.14	44.28	56.74	70.85	0.486	0.596	0.763	0.953
1.350	37.4	70	36.58	44.82	57.43	71.71	0.494	0.605	0.775	0.968
1.355	37.8	71	37.02	45.35	58.11	72.56	0.502	0.614	0.787	0.983
1.360	38.2	72	37.45	45.88	58.79	73.41	0.209	0.624	0.800	0.998
1.365	38.6	73	37.89	46.41	59.48	74.26	0.212	0.633	0.815	1.014
1.370	39.0	74	38.32	46.94	60.12	75.10	0.525	0.643	0.824	1.029
1.375	39.4	75	38.75	47.47	60.83	75.95	0.233	0.653	0.836	1.044
1.380	39.8	76	39.18	48.00	61.21	76.80	0.541	0.662	0.849	1.060
1.385	40.1	77	39.62	48.53	62.19	77.65	0.549	0.672	0.861	1.075
1·390 1·395	40·5 40·8	78 79	40.05	49.59	63.22	78·50 79·34	0.557	0.682	0.873	1.091
1.400	41.2	80	40.91	50.11	64.51	80.18	0.573	0.702	0.886 0.886	1.107
1.405	41.6	81	41.33	50.63	64.88	81.01	0.581	0.711	0.912	1.138
1.410	42.0	82	41.76	51.15	65.22	81.86	0.589	0.721	0.924	1.124
1.415	42.3	83	42.17	51.66	66.21	82.66	0.597	0.730	0.937	1.170
1.420	42.7	84	42.57	52.15	66.82	83.44	0.604	0.740	0.949	1.185
1.425	43.1	85	42.96	52.63	67.44	84.21	0.612	0.750	0.961	1.200
1.430	43.4	86	43.36	53.11	68.06	84.98	0.620	0.759	0.973	1.215
1.435	43.8	87	43.75	53.59	68.68	85.74	0.628	0.769	0.986	1.230
1.440	44.1	88	44.14	54.07	69.29	86.51	0.636	0.779	0.998	1.246
1.445	44 • 4	89	44.53	54.55	69.90	87.28	0.643	0.789	1.010	1.261
1.450	44.8	90	44.92	55.03	70.52	88.02	0.651	0.798	1.023	1.277
1.455	45.1	91	45.31	55.50	71.12	88.80	0.659	0.808	1.035	1.292
1.460	45.4	92	45.69	55.97	71.72	89.55	0.667	0.817	1.047	1.307
1.465	45.8	93	46.07	56.43	72.31	90.29	0.675	0.827	1.059	1.323
1.470	46.1	94	46.45	56.90	72.91	91.04	0.683	0.837	1.072	1.338
1.475	46.4	95	46.83	57:37	73.51	91.79	0.691	0.846	1.084	1.354
1.480	46.8	96	47.21	57.83	74.10	92.23	0.699	0.856	1.097	1.370

TABLE No. 84—continued

Specific				100 Pa	arts contain	İ	7	Liter con	tains Kilog	ranıs
Gravity at up C. (in vacuo).	Degrees Baumé.	Degrees Twaddell.	SO ₃ . Per cent.	SO ₄ H ₂ . Per cent.	60 Degrees Acid Per cent.	50 Degrees Acid Per cent.	SO ₃ .	SO ₄ H ₂ .	60 Degrees Acid.	50 Degrees Acid.
1.485	47.1	97	47.57	58.28	74.68	93.25	0.707	0.865	1.109	1.385
1.490	47.4	98	47.95	58.74	75.27	93.98	0.715	0.876	1.122	1.400
1.495	47.8	99	48.34	59.22	75.88	94.75	0.723	0.885	1.134	1.417
1.500	48.1	100	48.73	59.70	76.50	95.52	0.731	0.896	1.147	1.433
1.505	48.4	101	49.12	60.18	77.12	96.29	0.739	0.906	1.160	1.449
1.510	48.7	102	49.51	60.65	77.72	97:04	0.748	0.916	1.174	1.465
1.515	49.0	103	49.89	61.12	78.32	97.79	0.756	0.926	1.187	1.481
1.520	49.4	104	50.28	61.59	78.93	98.54	0.764	0.936	1.199	1.498
1.525	49.7	105	50.66	62.06	79.52	99.30	0.773	0.946	1.213	1.514
1.530	50.0	106	51.04	62.53	80.13	100.05	0.781	0.957	1.226	1.531
1.535	50.3	107	51.43	63.00	80.73	100.80	0.789	0.967	1.239	1.547
1.540	50.6	108	51.78	63.43	81.28	101.49	0.797	0.977	1.252	1.263
1.545	50.9	109	52.12	63.85	81.81	102.16	0.805	0.987	1.264	1.579
1.550	51.2	110	52.46	64.26	82.34	102.82	0.813	0.996	1.276	1.593
1.555	51.5	111	52.79	64.67	82.87	103.47	0.821	1.006	1.289	1.609
1.560	51.8	112	53.12	65.08	83.39	104.13	0.829	1.012	1.301	1.624
1.565	52.1	113	53.46	65.49	83.92	104.78	0.837	1.025	1.313	1.640
1.570	52.4	114	53.80	65.90	84.44	105.44	0.845	1.035	1.325	1.655
1.575	52.7	115	54.13	66.30	84.95	106.08	0.853	1.044	1.338	1.671
1.580	53.0	116	54.46	66.71	85.48	106.73	0.861	1.054	1.351	1.686
1.585	53.3	117	54.80	67.13	86.03	107.41	0.869	1.064	1.364	1.702
1.590	53.6	118	55.18	67.59	86.62	108.14	0.877	1.075	1.377	1.719
1.595	53.9	119	55.55	68.05	87.20	108.88	0.886	1.085	1.391	1.737
1.600	54.1	120	55 93	68.51	87.79	109.62	0.895	1.096	1.405	1.754
1.605	54.4	121	56.30	68.97	88.38	110.35	0.904	1.107	1.419	1.772
1.610	54.7	122	56.68	69.43	88.97	111.09	0.913	1.118	1·432 1·446	1.789 1.806
1.615	55.0	123	57.05	69.89	89·56 90·11	111.82	0.921	1.139	1.460	1.823
1.620	55.2	124	57.40	70.32		112.51	0.938	1.150	1.473	1.840
1.625 1.630	55.5	125	57.75	70.74	90.65 91.19	113·18 113·86	0.947	1.160	1.486	1.857
1.635	55·8 56·0	126	58.09	71.16	91.71	114.51	0.955	1.170	1.499	1.873
1.640	56.3	127 128	58·43 58·77	71.99	92.25	115.18	0.964	1.181	1.213	1.889
1.645	56.6	129	59.10	72.40	92.77	115.84	0.972	1.192	1.526	1.905
1.650	56.9	130	59.45	72.82	93.29	116.21	0.981	1.202	1.540	1.922
1.655	57.1	131	59.78	73.23	93.81	117.17	0.989	1.212	1.553	1.939
1.660	57.4	132	60.11	73.64	94.36	117.82	0.998	1.222	1.566	1.956
1.665	57.7	133	60.46	74.07	94.92	118.51	1.007	1.233	1.580	1.973
1.670	57.9	134	60.82	74.51	95.48	119.22	1.016	1.244	1.595	1.991
1.675	58.2	135	61.20	74.97	96.07	119.95	1.025	1.256	1.609	2.009
1.680	58.4	136	61.57	75.42	96.65	120.67	1.034	1.267	1.623	2.027
1.685	58.7	137	61.93	75.86	97.21	121.38	1.043	1.278	1.638	2.046
1.690	58.9	138	62.29	76.30	97.77	122.08	1.053	1.289	1.652	2.064
1.695	59.2	139	62.64	76.73	98.32	122.77	1.062	1.301	1.667	2.082
1.700	59.5	140	63.00	77.17	98.89	123.47	1.071	1.312	1.681	2.100
1.705	59.7	141	63.35	77.60	99.44	124.16	1.080	1.323	1.696	2.117
1.710	60.0	142	63.70	78.04	100.00	124.86	1.089	1.334	1.710	2.136
1.715	60.2	143	64.07	78.48	100.56	125.57	1.099	1.346	1.725	2.154
1.720	60.4	144	64.43	78.92	101.13	126.27	1.108	1.357	1.739	2.172
1.725	60.6	145	64.78	79.36	101.69	126.98	1.118	1.369	1.754	2.191
1.730	60.9	146	65.14	79.80	102.25	127.68	1.127	1.381	1.769	2.209
1.735	61.1	147	65.20	80.24	102.82	128.38	1.136	1.392	1.784	2.228
1.740	61.4	148	65.86	80.68	103.38	129.09	1.146	1.404	1.799	2.247

TABLE No. 84—continued

Specific Gravity				100 Pa	rts contain	ı	1	Liter con	tains Kilog	rams
at u. C. (in vacuo).	Degrees Baumé.	Degrees Twaddell.	SO ₃ . Per cent.	SO ₄ H ₂ . Per cent.	60 Degrees Acid Per cent.	50 Degrees Acid Per cent.	803.	80 ₄ H ₂ .	60 Degrees Acid.	50 Degree Acid.
1.745	21.0	140	66.00	01.10	100.05	100-50	1.150		7.014	0.005
1.745	61.6	149	66.22	81.12	103.95	129.79	1.156	1.416	1.814	2.265
1.750	61.8	150	66.58	81.56	104.52	130.49	1.165	1 427	1.829	2.284
1.755	62.1	151	66.94	82.00	105.08	131.20	1.175	1.439	1.845	2.303
1.760	62.3	152	67:30	82.44	105.64	131.90	1.185	1.451	1.859	2.321
1.765	62.5	153	67.65	82.88	106.21	132.61	1.194	1.463	1.874	2.340
1.770	62.8	154	68.02	83.32	106.77	133.31	1.204	1.475	1.890	2.359
1.775	63.0	155	68.49	83.90	107.51	134.24	1.216	1.489	1.908	2.381
1.780	63.2	156	68.98	84.20	108.27	135.50	1.228	1.504	1.928	2.407
1.785	63.5	157	69.47	85.10	109.05	136.16	1.240	1.519	1.947	2.432
1.790	63.7	158	69.96	85.70	109.82	137.14	1.252	1.534	1.965	2.455
1.795	64.0	159	70.45	86.30	110.28	138.08	1.265	1.549	1.983	2.479
1.800	64.2	160	70.94	86.90	111.35	139.06	1.277	1.564	2.004	2.503
1.805	64 4	161	71.50	87.60	112.25	140.16	1.291	1.281	2.026	2.530
1.810	64.6	162	72.08	88.30	113.15	141.28	1.305	1.598	2.048	2.558
1.815	64.8	163	72.69	89.05	114.11	142.48	1.319	1.621	2.071	2.587
1.820	65.0	164	73.51	90.05	115.33	144.08	1.338	1.639	2.099	2.622
1.821		1	73.63	90.20	115.59	144.32	1.341	1.643	2.104	2.628
1.822	65.1		73.80	90.40	115.84	144.64	1.345	1.647	2.110	2.63
1.823			73.96	90.60	116.10	144.96	1.348	1.651	2.116	2.643
1.824	65.2		74.12	90.80	116:35	145 28	1.352	1.656	2.122	2.650
1.825		165	74.29	91.00	116.61	145.60	1.356	1.661	2.128	2.65
1.826	65.3		74.49	91.25	116.93	146.00	1.360	1.666	2.135	2.660
1.827		!	74.69	91.50	117.25	146.40	1.364	1.671	2.142	2.67
1.828	65.4		74.86	91.70	117.51	146.72	1.368	1.676	2.148	2.68
1.829		!	75.03	91.90	117.76	147.04	1.372	1.681	2.154	2.68
1.830		166	75.19	92.10	118.02	147.36	1.376	1.685	2.159	2.69
1.831	65.5		75.35	92.30	118.27	147.68	1.380	1.690	2.165	2.70
1.832		1	75.53	92.52	118.56	148.03	1.384	1.695	2.172	2.71
1.833	65.6		75.72	92.75	118.85	148.40	1.388	1.700	2.178	2.72
1.834			75.96	93.05	119.23	148.88	1.393	1.706	2.186	2.73
1.835	65.7	167	76.27	93.43	119.72	149.49	1.400	1.713	2.196	2.74
1.836			76.57	93.80	120.19	150.08	1.406	1.722	2.207	2.75
1.837			76.90	94.20	120.71	150.72	1.412	1.730	2.217	2.76
1.838	65.8		77.23	94.60	121.22	151.36	1.419	1.739	2.228	2.78
1.839		1	77.55	95.00	121.74	152.00	1.426	1.748	2.239	2.79
1.840	65.9	168	78.04	95.60	122.51	152.96	1.436	1.759	2.254	2.81
1.8405			78.33	95.95	122.96	153.52	1.451	1.765	2.262	2.82
1.8410			79.19	97.00	124.30	155.20	1.458	1.786	2.288	2.85
1.8415		"	79.76	97.70	125.20	156.32	1.469	1.799	2.305	2.87
1.8410	:::		80.16	98.20	125.84	157.12	1.476	1.808	2.317	2.89
1.8405			80.57	98.70	126.48	157.92	1.483	1.816	2.328	2.90
1.8400		1	80.98	99.20	127.12	158.72	1.490	1.825	2.339	2.92
1.8395		1	81.18	99.45	127.44	159.12	1.494	1.830	2.344	2.92
1.8390			81.39	99.70	127.76	159.52	1.497	1.834	2.349	2.93
1.8385			81.59	99.95	128.08	159.92	1.500	1.838	2.355	2.94

TABLE No. 85.—Specific Gravities of Commercial Fuming Sulphuric Acid

At 15°	At 20°.	At 25°.	At 80°.	At 35°.	SO ₃ . Per cent.
1.8417	1.8371	1.8323	1.8287	1.8240	76.67
1.8427	1.8378	1.8333	1.8295	1.8249	77.49
1.8428	1.8388	1.8351	1.8302	1.8255	78:34
1.8437	1.8390	1.8346	1.8300	1.8257	79.04
1.8427	1.8386	1.8351	1.8297	1.8250	79.99
1.8420	1.8372	1.8326	1.8281	1.8234	80.46
1.8398	1.8350	1.8305	1.8263	1.8218	80.94
1.8446	1.8400	1.8353	1.8307	1.8262	81:37
1.8509	1.8466	1.8418	1.8371	1.8324	81.91
1.8571	1.8522	1.8476	1.8432	1.8385	82.17
1.8697	1.8647	1.8595	1.8545	1.8498	82.94
1.8790	1.8742	1.8687	1.8640	1.8592	83.25
1.8875	1.8823	1.8767	1.8713	1.8661	83.84
1.8942	1.8888	1.8833	1.8775	1.8722	84.12
1.8990	1.8940	1.8890	1.8830	1.8772	84.33
1.9034	1.8984	1.8930	1.8874	1.8820	84.67
1.9072	1.9021	1.8950	1.8900	1.8845	84.82
1.9095	1.9042	1.8986	1.8932	1.8866	84.99
1.9121	1.9053	1.8993	1.8948	1.8892	85.14
1.9250	1.9193	1.9135	1.9082	1.9023	85.54
1.9290	1.9236	1.9183	1.9129	1.9073	85.68
1.9368	1.9310	1.9250	1.9187	1.9122	85.88
1 9447	1.9392	1.9334	1.9279	1.9222	86.51
1.9520	1.9465	1.9402	1.9338	1.9278	86.72
1.9584	1.9528	1.9466	1.9406	1.9340	87.03
1.9632	1.9573	1.9518	1.9457	1.9398	87.46
cryst.	cryst.	1.9740	1.9666	1.9740	88.00

Table No. 86.—Percentages of SO₃ in Commercial Fuming Sulphuric Acid

SO ₃ by Titra-	Acid co		SO ₃ by Titra-	Acid co		SO ₃ by Titra-	Acid co		SO ₃ by Titra-	Acid co Per	ntains. cent.
tion.	SO ₄ H ₂ .	803.	tion.	SO ₄ H ₂ .	8O ₃ .	tion.	SO ₄ H ₂ .	803.	tion.	80 ₄ H ₂ .	803.
81.6326	100	0	86.2244	75	25	90.8163	50	50	95.4081	25	75
81.8163	99	1	86.4081	74	26	91.0000	49	51	95.5918	24	76
82.0000	98	2	86.5918	73	27	91.1836	48	52	95.7755	23	77
82 1836	97	3	86.7755	72	28	91.3673	47	53	95.9591	22	78
82.3674	96	4	86.9591	71	29	91.5510	46	54	96.1428	21	79
82.5510	95	5	87.1428	70	30	91.7346	45	55	96.3265	20	80
82.7346	94	6	87.3265	69	31	91.9183	44	56	96.5102	19	81
82.9183	93	7	87.5102	68	32	92.1020	43	57	96.6938	18	82
83.1020	92	8	87.6938	67	33	92.2857	42	58	96.8775	17	83
83.2857	91	9	87.8775	66	34	92.4693	41	59	97.0612	16	84
83 4693	90	10	88.0612	65	35	92.6530	40	60	97.2448	15	85
83.6530	89	11	88.2448	64	36	92.8367	39	61	97.4285	14	86
83.8367	88	12	88.4285	63	37	93.0204	38	62	97.6122	13	87
84.0204	87	13	88.6122	62	38	93.2040	37	63	97.7959	12	88
84.2040	86	14	88.7959	61	39	93:3877	36	64	97.9795	11	89
84:3877	85	15	88.9795	60	40	93.5714	35	65	98.1632	10	90
84.5714	84	16	89.1632	59	41	93.7551	34	66	98:3469	9	91
84.7551	83	17	89.3469	58	42	93.9387	33	67	98.5306	8	92
84 .9387	82	18	89.5306	57	43	94 · 1224	32	68	98.7142	7	93
85.1224	81	19	89.7142	56	44	94.3061	31	69	98 8979	6	94
85.3061	80	20	89.8979	55	45	94 4897	30	70	99.0816	5	95
85.4897	79	21	90.0816	54	46	94.6734	29	71	99.2653	4	96
85.6734	78	22	90.2653	53	47	94 8571	28	72	99.4489	3	97
85.8571	77	23	90.4489	52	48	95.0408	27	73	99.6326	2	98
86.0408	76	24	90.6326	51	49	95.2244	26	74	99.8163	1	99

Table No. 87.—Specific Gravities of Solutions of Common Salt

Specific Gravity.	NaCl. Per cent.	Specific Gravity.	NaCl. Per cent.	Specific Gravity.	NaCl. Per cent.	
1.00725	1	1.07335	10	1.14315	19	
1.01450	2	1.08097	11	1.15107	20	
1.02174	3	1.08859	12	1.15931	21	
1.02899	4	1.09622	13	1.16755	22	
1.03624	5	1.10384	14	1.17580	23	
1.04366	6	1.11146	15	1.18404	24	
1.05108	7	1.11938	16	1.19228	25	
1.05851	8	1.12730	17	1.20098	26	
1.06593	9	1.13523	18	1.20433	26:395	

Table No. 88.—Specific Gravities of Mixtures of Alcohol and Water at 15.5°C

Per		Specific Gravity corresponding to		Specific Gravity corresponding to		Per	Specific Gravity corresponding to	
Alcohol.	Per cent by	Per cent	cent Alcohol.	Per cent by	Per cent	cent Alcohol.	Per cent	Per cent
	Volume.	Weight.		Volume.	Weight.		Volume.	Weight.
					-			
1	0.9985	0.9981	35	0.9592	0.9490	68	0.8949	0.8772
2	.9970	.9963	36	.9579	.9472	69	·8925	·8748
3	.9956	.9944	37	.9565	.9453	70	.8900	·8724
4	.9942	.9928	38	.9550	.9433	71	*8875	·8700
5	·9928	.9912	39	.9535	.9413	72	*8850	.8676
6	•9915	.9896	40	.9519	.9394	73	*8825	*8652
7	.9902	-9880	41	.9503	.9374	74	.8799	*8629
8	•9890	.9866	42	·9487	.9353	75	.8773	·8605
9	.9878	.9852	43	.9470	.9332	76	.8747	·8581
10	.9866	•9839	44	.9452	.9311	77	.8720	.8557
11	.9854	•9826	45	.9435	·9291	78	.8693	*8533
12	.9843	.9813	46	.0417	·9269	79	.8666	-8509
13	.9832	-9800	47	.9399	·9248	80	.8639	*8484
14	9821	9788	48	•9381	.9227	81	.8611	-8459
15	·9811	.9775	49	.9362	.9204	82	.8583	·8435
16	.9800	.9763	50	.9343	·9183	83	.8555	·8409
17	.9790	.9751	51	.9323	.9160	84	·8526	*8385
18	-9780	.9739	52	.9303	·9138	85	.8946	*8359
19	.9770	.9727	53	.9283	.9116	86	·8466	.8333
20	.9760	.9714	54	.9263	.9094	87	·8436	·8307
21	.9750	.9702	55	.9242	.9072	88	.8405	·8282
22	.9740	.9690	56	.9221	9049	89	·8373	-8256
23	.9729	.9677	57	.9200	.9027	90	.8339	-8229
24	.9719	.9664	58	.9178	.9004	91	.8306	·8203
25	.9709	.9651	59	.9156	·8981	92	.8272	8176
26	9698	.9637	60	.9134	.8958	93	8237	·8149
27	-9688	.9622	61	.9112	-8935	94	.8201	·8122
28	.9677	.9607	62	•9090	.8911	95	.8164	·8094
29	.9666	.9592	63	.9067	*8888	96	.8125	*8065
30	.9655	.9577	64	.9044	.8865	97	.8084	.8036
31	.9643	•9560	65	9021	*8842	98	.8041	-8006
32	.9631	.9544	66	.8997	.8818	99	.7995	.7976
33	.9618	.9526	67	.8973	·8795	100	.7946	.7946
34	.9605	•9508						
	1		li	1		11	<u> </u>	1

Digitized by Google

Table No. 89

Percentages of Absolute Alcohol in Aqueous Solutions

Specific Gravity.	100 Volumes contain volumes		Con-	Specific	100 Volumes contain volumes		Con-
	Alcohol.	Water.	traction.	Gravity.	Alcohol.	Water.	traction.
1.0000	0	100.000	0.000	0.9323	51	52.705	3.705
0.9985	1	99.055	0.055	0.9303	52	51.711	3.711
0.9970	2	98.111	0.111	0.9283	53	50.716	3.716
0.9956	3	97.176	0.176	0.9263	54	49.722	3.722
0.9942	4	96.242	0.242	0.9242	55	48.717	3.717
0.9928	5	95.307	0.307	0.9221	56	47.712	3.712
0.9915	6	94.382	0.382	0.9200	57	46.708	3.708
0.9902	7	93.458	0.458	0.9188	58	45.693	3.698
0.9890	8	92.543	0.543	0.9156	59	44.678	3.678
0.9878	9	91.629	0.629	0.9134	60 61	43.664	3.664
0.9866 0.9854	10 11	90·714 89·799	0·714 0·799	0.9112 0.9090	62	42.649 41.635	3.649
0.9843	12	88.895	0.895	0.9067	63	40.610	3.61
0.9832	13	87.990	0.990	0.9044	64	39.586	3.586
0.9821	14	87.086	1.086	0.9021	65	38.561	3.56
0.9811	15	86.191	1.191	0.8997	66	37.526	3.52
0.9800	16	85.286	1.286	0.8973	67	36.492	3.49
0.9790	17	84.392	1.392	0.8949	68	35.457	3.45
0.9780	18	83.497	1.497	0.8925	69	34.423	3.42
0.9770	19	82.603	1.603	0.8900	70	33.378	3.37
0.9760	20	81.708	1.708	0.8875	71	32.333	3.33
0.9750	21	80.813	1.813	0.8850	72	31.289	3.28
0.9740	22	79.919	1.919	0.8825	73	30.244	3.54
0.9729	23	79.014	2.014	0.8799	74	29.190	3.19
0.9719	24	78.119	2.119	0.8773	75	28.135	3.13
0·9709 0·9698	25 26	77·225 76·320	2.225	0.8747	76 77	27.080	3.08
0.9688	26 27	75.426	2·320 2·426	0.8720 0.8693	78	26·016 24·951	3.010
0.9677	28	74.521	2.420	0.8665	79	23.877	2.87
0.9666	29	73.617	2.617	0.8639	80	22.822	2.82
0.9655	30	72.712	2.712	0.8611	81	21.747	2.74
0.9643	31	71.797	2.797	0.8583	82	20.673	2.67
0.9631	32	70.883	3.883	0.8555	83	19.598	2.59
0.9618	33	69.958	2.958	0.8526	84	18.514	2.21
0.9605	34	69.034	3.034	0.8496	85	17.419	2.419
0.9592	35	68.109	3.109	0.8466	86	16.324	2.35
0 9579	36	67.184	3.184	0.8436	87	15.230	2.23
0.9565	37	66.250	3.250	0.8405	88	14.125	2.12
0.9550	38	65.305	3.305	0.8373	89	13.011	2.01
0.9535 0.9519	39 40	64·361 63·406	3.361	0.8339	90 91	11.876 10.751	1.876
0.9503	41	62.451	3·406 3·451	0.8306 0.8272	92	9.617	1.61
0.9487	42	61.497	3.497	0.8272	93	8.472	1.47
0.9470	43	60.532	3.532	0.8201	94	7.318	1.318
0.9452	44	59.558	3.558	0.8164	95	6.153	1.15
0.9435	45	58.593	3.593	0.8125	96	4.968	0.968
0.9417	46	57.618	3.618	0.8084	97	3.764	0.76
0.9399	47	56.644	3.644	0.8041	98	2.539	0.539
0.9381	48	55.669	3.669	0.7995	99	1.285	0.28
0.9362	49	54.685	3.685	0.7946	100	0.000	0.000
0.9343	50	53.700	3.700	I	1	I .	1

INDEX

ACETIC acid, 14, 26, 30, 32 Black mustard oil, 44 Acetin, 10 Blown oils, 74-76 Acetodiformin, 10 Boar fat, 52 Acetyl values, 30-31, 32 Boiled oils, 82 Acetylated glycerides, 30-31 Bone fat, 52 Acid value, 33 Borneo tallow, 50 Acids, dibasic, 18, 20 Brassidic acid, 16 dihydroxylated, 18 iodine value of, 25 hexahydroxylated, 20 Brassidin, 10 hydroxylated, 18, 37 Brazil nut oil, 44 monobasic, 18 Bromoderivatives of unsaturated fatty monohydroxylated, 18 acids, 38 tetrahydroxylated, 20 Butter fat, 52 trihydroxylated, 20 Butyric acid, 14, 26, 30, 32 Acorn oil, 46 Butyrin, 10 Akee oil, 50 Alcohol, aqueous solutions of, 140, 141 CACAO butter, 50 Alcohols, 22, 23 Californian nutmeg oil, 46 acetyl values of, 32 Cameline oil, 44 Alkali, caustic, solutions of, 116 Canaübyl alcohol, 22 Alkalimetrical degrees, German and Candle making, 88 French, 117-118 material, 101-104 Almond oil, 46 Candle nut oil, 42 Amber, 83 Capric acid, 14, 26, 30, 32 Amoora oil, 42 Caprin, 10 Animal fats, 52 Caproic acid, 14, 26, 30, 32 oils, 48-49 Caproin, 10 waxes, 54 Caprylic acid, 14, 26, 30 Animis, 83 Caprylin, 10 Apricot kernel oil, 46 Carapa fat, 50 Arachidic acid, 14, 32 Carnaüba wax, 54 Arachin, 10 Carnatibic acid, 14 Arachis oil, 46 Castor oil, 44 Arctic sperm oil, 54 Cat fat (wild), 52 Argemone oil, 42 fat (domestic), 52 Asellic acid, iodine value of, 25 Caustic potash solution, 109 Azelaic acid, 20 soda solution, 112-115 Cedar nut oil, 42 BADGER fat, 52 Ceresine, 42 Basswood oil, 44 Celosia oil, 42 Baumé degrees, 132-133 Cerotic acid, 14, 26, 30, 32, 98 Beech nut oil, 44 Cerotin, 10 Beef marrow, 52 Ceryl alcohol, 22, 32, 33 Beeswax, 54, 104 cerotate, 12, 29 Behenic acid, 14 palmitate, 12, 29 Ben oil, 46 Cetin, 12, 29, 54 Birch seed oil, 46 Cetyl alcohol, 22, 32, 33 Blackcock fat, 52 palmitate, 12, 29 Black fish body oil, 48 stearate, 12, 29 fish jaw oil, 48 Chamois fat, 52

144 LABORATORY COMPANION TO FATS AND OILS INDUSTRIES

Chaulmoogra oil, 50 Dog fat, 52 Cherry kernel oil, 46 Dolphin body oil, 48 laurel oil, 46 jaw oil, 48 Chicken fat, 52 Driers, 84 Chinese wood oil, 42 Drying fats, 52 wax, 54 oils, 42 Cholesterol, 3, 22, 32, 33 Duck fat (domestic), 52 Cholesteryl cerotate, 12, 29 fat (wild), 52 oleate, 12, 29 palmitate, 12, 29 Ega oil, 48 stearate, 12, 29 Elæomargaric acid, 16 Cloth oils, 63-64 acid, iodine value of, 25 Coal fish liver oil, 48 Elæostearic acid, 16 Cocceric acid, 18 Elaïdic acid, 16, 38 Coccerin, 12, 29 acid, iodine value of, 25 Cocceryl alcohol, 22 Elaïdin, 10 coccerate, 12, 29 test, 34 Cocoa butter, 50 Elaidodistearin, 10 nut oil, 50 Elk fat, 52 Cod liver oil, 48 Erucic acid, 16, 26, 30, 32 Coffee berry oil, 46 iodine value of, 25 Colophony, 83 Erucin, 10 Colza oil, 44 Corn oil, 44 Fallow buck fat, 52 Cotton seed oil, 44 Fatty acids, 14-21 stearine, 50 acids, acetylated, 30-31 Crabwood oil, 50 acids, acid values of, 32 Cramp fish oil, 48 acids, percentages of, 30-31 Croton oil, 44 Fennel, small, oil, 44 Copal, Brazil, 83 Fir seed oil, 42 commercial, 83 Fox fat, 52 Manila, 83 Freezing mixtures, 24 Sierra Leone, 83 Cowrie, 83 GAÏDIC acid, 16 Curcas oil, 44 Garden cress oil, 44 German sesamé oil. 44 Dammar, 83 Glycerides, acetylated, 30-31 Daturic acid, 14 Mono-, 8 Dégras, 69-72 Di-, 8 Di-acetin, 8 Tri-, 10 Di-arachin, 8 Glycerin, 121 Dibasic acids, 18, 20 aqueous solutions of, 124, 125, 126 Di-brassidin, 8 distilled, 123 Di-butyrin, 8 Glycerol, 22, 32 Di-cerotin, 8 yields of, 27 Di-erucin, 8 Goa butter, 50 Di-formin, 8 Goose fat (domestic), 52 Di-glycerides, 8, 27, 30-31 fat (wild), 52 Di-hydroxybehenic acid, 18 Grape seed oil, 44 p-Di-hydroxybehenic acid, 18 Gums, 83 Di-hydroxyjecoleic acid, 18 Di-hydroxylated acids, 18 HADDOCK liver oil, 48 Di-hydroxypalmitic acid, 18 Hake liver oil, 48 Di-hydroxystearic acid, 18, 26, 30, 32, 37 Hare fat. 52 p-Di-hydroxystearic acid, 18 Hazel nut oil, 46 Di-hydroxystearidic acid, 18 Hemp seed oil, 42 Henbane oil, 42 Di-hydroxytiglic, 18 Di-isovalerin, 8 Herring oil, 48 Dika oil, 50 Hexahydroxylated acids, 20 Di-palmitin, 8 Horse fat, 52 Di-melissin, 8 marrow, 52 Di-olein, 8 Horses' foot oil, 48 Di-stearin, 8 Human fat, 52 Doeglic acid, 16 Hyænic acid, 14 acid, iodine value of, 25 Hydrochloric acid, specific gravities of, 134

Hydrometer degrees, 132-133 Luffa seed oib 44 Hydroxylated acids, 18, 37 Hydroxystearic acid, 18, 26 Hypogæic acid, 16 acid, iodine value of, 25 ICEBEAR fat, 52 Indian laurel oil, 42 India rubber substitutes, 87 Insect wax, 54 Insoluble fatty acids, percentages of, 27, 30-31 Iodine values, 25 Isanic acid, 16 acid, iodine value of, 25 Isano oil, 42 Isocetic acid, 14, 22, 23 Isoceryl alcohol, 22 Iso-di-hydroxybehenic acid, 18 Isoerucic acid, 16 acid, iodine value of, 25 Isocholesterol, 22, 33 Isocholesteryl stearate, 12, 29 Isolinolenic acid, iodine value of, 25 Isolinusic acid, 20, 37 Iso-oleic acid, 16 acid, iodine value of, 25 Iso-tri-hydroxystearic acid, 20 JAMBA oil, 44 Japan wax, 50 Japanese sardine oil, 48 wood oil, 42 Japanic acid, 18 Jecoleic acid, 16 acid, iodine value of, 25 Jecoric acid, iodine value of, 25 KAPOK oil, 44 Koëme oil, 46 Kokum butter, 50 LALLEMANTIA oil, 42 Lanoceric acid, 18 Lanolin alcohol, 22 Lanopalmic acid, 18 Lard, 52 Laurel oil, 50 Lauric acid, 14, 26, 30 32 93 Laurin, 10 Lead oxide, 84 Lignoceric acid, 14 Lime, milk of, 91, 92 Ling liver oil, 48 Linolenic acid, 16, 26, 32 acid, iodine value of, 25, 30, 38 Linolic acid, 16, 26, 30, 32, 38 acid, iodine value of, 25 Linseed oil, 42 Linusic acid, 20, 26, 30, 32, 37 Liquid waxes, 54 Litharge, 84 Lithographic varnishes, 83

Livache's test, 35

Louc-Mouc seed oil, 46

Lycopodic acid, 16 acid, iodine value of, 25 Lyes, caustic, 109, 110 MACASSAR oil, 50 Mace butter, 50 Madia oil, 42 Mafura tallow, 50 Mahua butter, 50 Maize (corn) oil, 44 Malabar tallow, 50 Manganese acetate, 84 borate, 84 carbonate, 84 dioxide, 84 linoleate, 84 oxalate, 84 oxide hydrated, 84 peroxide hydrated, 84 resinate, fused, 84 resinate, precipitated, 84 Mangano-lead resinate, fused, 84 linoleate, 84 Marine animal oils, 48 Maripa fat oil, 50 Mastic, 83 Melissic acid, 14 Melissin, 10 Melissyl alcohol, 22 Menhaden oil, 48 Millet oil acid, iodine value of, 25 Minium, 84 Mixed glycerides, 10 Mkanyi fat, 50 Mocaya oil, 50 Mohamba oil, 42 Mono-acetin, 8 Mono-arachin, 8 Mono-butyrin, 8 Mono-cerotin, 8 Mono-formin, 8 Mono-glycerides, 8, 9, 27, 30-31 Mono-isovalerin, 8 Mono-melissin, 8 Mono-olein, 8 Mono-palmitin, 8 Mono-stearin, 8 Mowrah seed oil, 50 Mutton tallow, 52 Myricin, 29 Myricyl palmitate, 12, 29 alcohol, 22, 32, 33 Myristic acid, 14, 26, 32, 93 Myristin, 10 Myrtle wax, 50 NEAT'S foot oil, 48 Niger seed oil, 42 Non-drying fats, 52 Non-drying oils, 46 Nutmeg butter, 50 OBA oil, 50 Octodecyl alcohol, 22, 33

Octodecyl palmitate, 12, 29 • Ricinolein, 10 Oleic acid, 16, 26, 30, 32, 33, 37, 95, 105 Ricinisoleic acid, 25, 32 acid, iodine value of, 25 acid, iodine value of, 25, 32 Olein, 10 Roebuck fat, 52 Oleine, commercial, 105 Oleodistearin, 10 SAFFLOWER oil, 42 Olive oil, 46 Salt, specific gravities of solutions, 140 kernel oil, 46 Sandarac Austral, 83 Oxidised oils, 82 Mogador, 83 Oxygen absorption by Livache's test, 35 Sanguinella oil, 46 absorption by Bishop's test, 36 Saponification values, 27, 29, 30-31 absorption by the Glass-Plate method, Sardine oil, 48 oil, Japanese, 48 Sativic acid, 20, 26, 30, 32, 37 PALM oil, 50 Sawarri fat, 50 nut oil, 50 Scotch paraffin waxes, 98, 101 Palmitic acid, 14, 26, 30, 32, 93, 94, 95, Seal oil, 48 Sebacic acid, 20 98 Secale oil, 46 Palmitin, 10 Paradise nut oil, 46 Semi-drying oils, 44 Paraffin wax, 33 Sesamé oil, 44 wax, melting points, 98 Shark liver oil, 48 Shea butter, 50 wax, specific gravities of, 99 wax, solubility of, 100 Sheep's foot oil, 48 wax, mixed, 101-103 Shellac, dark, 83 Skate liver oil, 48 Peach kernel oil, 46 Phulwara butter, 50 Siccative, 84 Small fennel oil, 44 Physetoleic acid, 16 acid, iodine value of, 25 Soap manufacture, 107 Phytosterol, 3, 22, 33 Sod oils, 67-68 Pigeon fat, 52 Soda, caustic, 109, 110 caustic, solutions, 112-115 Pine marten fat, 52 Pistachio oil, 46 Sodium carbonate, solutions of, 118 Plum kernel oil, 46 Soja bean oil, 44 Solid waxes, 54 Polecat fat, 52 Poppy seed oil, 42 Sperm oil, 54 Porpoise body oil, 48 Spermaceti, 54 jaw oil, 48 Sprat oil, 46 Potash, caustic, 109, 110 Stag fat, 52 Potassium carbonate, 119 Starling fat, 52 Psyllostearyl alcohol, 22 Stearic acid, 14, 26, 30, 32, 93, 94, 95 Pumpkin seed oil, 44 Stearin, 10 Stearine, 96, 97, 101-103 Quince oil, 46 ' Stearolactone, 18 oil, hydroxy acid in, 38 Stickleback oil, 48 Stillingia oil, 42 Rabbit fat (wild), 52 Strophantus seed oil. 46 fat (tame), 52 Sturgeon oil, 48 Radish seed oil, 44 Suberic acid, 48 Succinit, 83 Rambutan tallow, 50 Rape oil, 44 Sugar of lead, 84 Rapic acid, 16 Sulphur chloride test, 34 acid, iodine value of, 25 Sulphuric acid, specific gravities of, 135-Ravison oil, 44 138 Ray liver oil, 48 acid fuming, specific gravities of, 139 Red lead, 84 Sunflower oil, 42 Red oils, 97 Sunfish oil, 48 Reindeer tallow, 52 Residue of distilled glycerin, 123 TARIRIC acid, 16, 38 Resin in soap, 120 acid, iodine values, 25 Rice oil, 46 Tea seed oil, Chinese, 46 Ricinelaïdic acid, 18, 38 seed oil, Assam, 46 Telfairic acid, 16, 38 Ricinic acid, 18 Ricinoleic acid, 18, 26, 30, 38 Terrestrial animal oils, 48 acid, iodine value of, 25 Tetrahydroxylated acid, 20

Therapic acid, 18, 38 acid, iodine value of, 25 Thermometric scales, 129-131 Tiglic acid, 16 acid, iodine value of, 25 Tigliceric acid, 18 Tobacco seed oil, 42 Triglycerides, 10, 12, 27, 30-31 pure, 13 Trihydroxylated acids, 20 Tri-hydroxystearic acid, 20, 26, 30, 32 Tropæolum oil, 46 Tung oil, 42 Tunny fish oil, 48 Turkey fat, 52 Twaddell degrees, 132-133

UCUHUBA fat, 50 Umbellulic acid, 14 Ungnadia oil, 46 Unsaponifiable substances, 33

VALERIC acid, 26, 30 Valeric, Iso-, acid, 14 Valerin, 10 Varnish, lithographic, 83 Vegetable fats, 50-51 oils, 42-47 tallow, 50 waxes, 54 Viscosities, 58-60 Vulcanised oils, 87

WALNUT oil, 42 Waxes, 12, 54-55 animal, 54-55 saponification values of, 29 vegetables, 54, 55 Weld seed oil, 42 Whale oil, 48 Wheat oil, 44 meal oil, 46 White mustard oil, 44 Wild boar fat, 52 duck fat, 52 mango oil, 50 Wool grease, 54 oils, 63 oil emulsion, 64

wax, 54

THE END

JOHN M°NEIL AND CO.


(Formerly AITKEN, M°NEIL AND CO.)

Engineers.

GLASGOW.—Colonial Iron Works, Govan. Telegrams.—"Colonial," Glasgow.

LONDON.—35 Queen Victoria Street, E.C. Telegrams.—"Idustria," London.

SINGLE DOUBLE TRIPLE

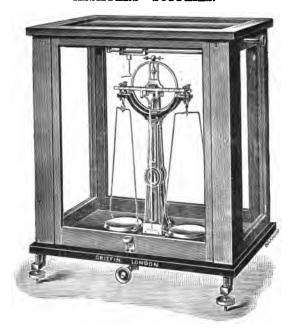
QUADRUPLE EFFET EVAPORATORS.

MCNEIL-LEWKOWITSCH PATENT EVAPORATOR FOR SOLUTIONS FROM WHICH SALTS SEPARATE.

SOAP, CANDLE, OIL REFINING, and

CHEMICAL PLANTS.

GLYCERINE RECOVERY,


and

GLYCERINE REFINING PLANTS.

JOHN J. GRIFFIN & SONS, Ltd. 20-26 SARDINIA STREET, LINCOLN'S INN FIELDS, LONDON, W.C.

MANUFACTURERS AND IMPORTERS OF CHEMICAL APPARATUS AND CHEMICALS.

ASSAYERS' SUPPLIES.

SPECIALITIES:

Balances of Precision sensitive to 1-200th of a Milligram.

Bohemian and Jena Glass, Beakers, Flasks, Retorts, Funnels, etc.

Furnaces for Gas, Coal, Coke, Charcoal, Gasoline, Benzoline,
and Electric Power.

IMPROVED CRUSHERS and GRINDERS.

Will Pulverise the Hardest Rock to a 200 Mesh Powder.

NEW APPARATUS IN METAL OR GLASS MADE TO ORDER IN OUR OWN WORKSHOPS.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO SO CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

SEP 30 1936 AUG & 1983 NOV . 7. 1839 4 1935 APR MAY 10 1936 JAN 19 1940 AUG 5 ID 21_50m.1,'8

YC: 18327

